pyg-nightly 2.6.0.dev20240318__py3-none-any.whl → 2.7.0.dev20250115__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (226) hide show
  1. {pyg_nightly-2.6.0.dev20240318.dist-info → pyg_nightly-2.7.0.dev20250115.dist-info}/METADATA +31 -47
  2. {pyg_nightly-2.6.0.dev20240318.dist-info → pyg_nightly-2.7.0.dev20250115.dist-info}/RECORD +226 -199
  3. {pyg_nightly-2.6.0.dev20240318.dist-info → pyg_nightly-2.7.0.dev20250115.dist-info}/WHEEL +1 -1
  4. torch_geometric/__init__.py +28 -1
  5. torch_geometric/_compile.py +8 -1
  6. torch_geometric/_onnx.py +14 -0
  7. torch_geometric/config_mixin.py +113 -0
  8. torch_geometric/config_store.py +28 -19
  9. torch_geometric/data/__init__.py +24 -1
  10. torch_geometric/data/batch.py +2 -2
  11. torch_geometric/data/collate.py +8 -2
  12. torch_geometric/data/data.py +16 -8
  13. torch_geometric/data/database.py +61 -15
  14. torch_geometric/data/dataset.py +14 -6
  15. torch_geometric/data/feature_store.py +25 -42
  16. torch_geometric/data/graph_store.py +1 -5
  17. torch_geometric/data/hetero_data.py +18 -9
  18. torch_geometric/data/in_memory_dataset.py +2 -4
  19. torch_geometric/data/large_graph_indexer.py +677 -0
  20. torch_geometric/data/lightning/datamodule.py +4 -4
  21. torch_geometric/data/separate.py +6 -1
  22. torch_geometric/data/storage.py +17 -7
  23. torch_geometric/data/summary.py +14 -4
  24. torch_geometric/data/temporal.py +1 -2
  25. torch_geometric/datasets/__init__.py +17 -2
  26. torch_geometric/datasets/actor.py +9 -11
  27. torch_geometric/datasets/airfrans.py +15 -18
  28. torch_geometric/datasets/airports.py +10 -12
  29. torch_geometric/datasets/amazon.py +8 -11
  30. torch_geometric/datasets/amazon_book.py +9 -10
  31. torch_geometric/datasets/amazon_products.py +9 -10
  32. torch_geometric/datasets/aminer.py +8 -9
  33. torch_geometric/datasets/aqsol.py +10 -13
  34. torch_geometric/datasets/attributed_graph_dataset.py +10 -12
  35. torch_geometric/datasets/ba_multi_shapes.py +10 -12
  36. torch_geometric/datasets/ba_shapes.py +5 -6
  37. torch_geometric/datasets/bitcoin_otc.py +1 -1
  38. torch_geometric/datasets/brca_tgca.py +1 -1
  39. torch_geometric/datasets/cornell.py +145 -0
  40. torch_geometric/datasets/dblp.py +2 -1
  41. torch_geometric/datasets/dbp15k.py +2 -2
  42. torch_geometric/datasets/fake.py +1 -3
  43. torch_geometric/datasets/flickr.py +2 -1
  44. torch_geometric/datasets/freebase.py +1 -1
  45. torch_geometric/datasets/gdelt_lite.py +3 -2
  46. torch_geometric/datasets/ged_dataset.py +3 -2
  47. torch_geometric/datasets/git_mol_dataset.py +263 -0
  48. torch_geometric/datasets/gnn_benchmark_dataset.py +11 -10
  49. torch_geometric/datasets/hgb_dataset.py +8 -8
  50. torch_geometric/datasets/imdb.py +2 -1
  51. torch_geometric/datasets/karate.py +3 -2
  52. torch_geometric/datasets/last_fm.py +2 -1
  53. torch_geometric/datasets/linkx_dataset.py +4 -3
  54. torch_geometric/datasets/lrgb.py +3 -5
  55. torch_geometric/datasets/malnet_tiny.py +4 -3
  56. torch_geometric/datasets/mnist_superpixels.py +2 -3
  57. torch_geometric/datasets/molecule_gpt_dataset.py +485 -0
  58. torch_geometric/datasets/molecule_net.py +15 -3
  59. torch_geometric/datasets/motif_generator/base.py +0 -1
  60. torch_geometric/datasets/neurograph.py +1 -3
  61. torch_geometric/datasets/ogb_mag.py +1 -1
  62. torch_geometric/datasets/opf.py +239 -0
  63. torch_geometric/datasets/ose_gvcs.py +1 -1
  64. torch_geometric/datasets/pascal.py +11 -9
  65. torch_geometric/datasets/pascal_pf.py +1 -1
  66. torch_geometric/datasets/pcpnet_dataset.py +1 -1
  67. torch_geometric/datasets/pcqm4m.py +10 -3
  68. torch_geometric/datasets/ppi.py +1 -1
  69. torch_geometric/datasets/qm9.py +8 -7
  70. torch_geometric/datasets/rcdd.py +4 -4
  71. torch_geometric/datasets/reddit.py +2 -1
  72. torch_geometric/datasets/reddit2.py +2 -1
  73. torch_geometric/datasets/rel_link_pred_dataset.py +3 -3
  74. torch_geometric/datasets/s3dis.py +5 -3
  75. torch_geometric/datasets/shapenet.py +3 -3
  76. torch_geometric/datasets/shrec2016.py +2 -2
  77. torch_geometric/datasets/snap_dataset.py +7 -1
  78. torch_geometric/datasets/tag_dataset.py +350 -0
  79. torch_geometric/datasets/upfd.py +2 -1
  80. torch_geometric/datasets/web_qsp_dataset.py +246 -0
  81. torch_geometric/datasets/webkb.py +2 -2
  82. torch_geometric/datasets/wikics.py +1 -1
  83. torch_geometric/datasets/wikidata.py +3 -2
  84. torch_geometric/datasets/wikipedia_network.py +2 -2
  85. torch_geometric/datasets/willow_object_class.py +1 -1
  86. torch_geometric/datasets/word_net.py +2 -2
  87. torch_geometric/datasets/yelp.py +2 -1
  88. torch_geometric/datasets/zinc.py +1 -1
  89. torch_geometric/device.py +42 -0
  90. torch_geometric/distributed/local_feature_store.py +3 -2
  91. torch_geometric/distributed/local_graph_store.py +2 -1
  92. torch_geometric/distributed/partition.py +9 -8
  93. torch_geometric/edge_index.py +616 -438
  94. torch_geometric/explain/algorithm/base.py +0 -1
  95. torch_geometric/explain/algorithm/graphmask_explainer.py +1 -2
  96. torch_geometric/explain/algorithm/pg_explainer.py +1 -1
  97. torch_geometric/explain/explanation.py +2 -2
  98. torch_geometric/graphgym/checkpoint.py +2 -1
  99. torch_geometric/graphgym/logger.py +4 -4
  100. torch_geometric/graphgym/loss.py +1 -1
  101. torch_geometric/graphgym/utils/agg_runs.py +6 -6
  102. torch_geometric/index.py +826 -0
  103. torch_geometric/inspector.py +13 -7
  104. torch_geometric/io/fs.py +28 -2
  105. torch_geometric/io/npz.py +2 -1
  106. torch_geometric/io/off.py +2 -2
  107. torch_geometric/io/sdf.py +2 -2
  108. torch_geometric/io/tu.py +4 -5
  109. torch_geometric/loader/__init__.py +4 -0
  110. torch_geometric/loader/cluster.py +10 -4
  111. torch_geometric/loader/graph_saint.py +2 -1
  112. torch_geometric/loader/ibmb_loader.py +12 -4
  113. torch_geometric/loader/mixin.py +1 -1
  114. torch_geometric/loader/neighbor_loader.py +1 -1
  115. torch_geometric/loader/neighbor_sampler.py +2 -2
  116. torch_geometric/loader/prefetch.py +1 -1
  117. torch_geometric/loader/rag_loader.py +107 -0
  118. torch_geometric/loader/utils.py +8 -7
  119. torch_geometric/loader/zip_loader.py +10 -0
  120. torch_geometric/metrics/__init__.py +11 -2
  121. torch_geometric/metrics/link_pred.py +317 -65
  122. torch_geometric/nn/aggr/__init__.py +4 -0
  123. torch_geometric/nn/aggr/attention.py +0 -2
  124. torch_geometric/nn/aggr/base.py +3 -5
  125. torch_geometric/nn/aggr/patch_transformer.py +143 -0
  126. torch_geometric/nn/aggr/set_transformer.py +1 -1
  127. torch_geometric/nn/aggr/variance_preserving.py +33 -0
  128. torch_geometric/nn/attention/__init__.py +5 -1
  129. torch_geometric/nn/attention/qformer.py +71 -0
  130. torch_geometric/nn/conv/collect.jinja +7 -4
  131. torch_geometric/nn/conv/cugraph/base.py +8 -12
  132. torch_geometric/nn/conv/edge_conv.py +3 -2
  133. torch_geometric/nn/conv/fused_gat_conv.py +1 -1
  134. torch_geometric/nn/conv/gat_conv.py +35 -7
  135. torch_geometric/nn/conv/gatv2_conv.py +36 -6
  136. torch_geometric/nn/conv/general_conv.py +1 -1
  137. torch_geometric/nn/conv/graph_conv.py +21 -3
  138. torch_geometric/nn/conv/gravnet_conv.py +3 -2
  139. torch_geometric/nn/conv/hetero_conv.py +3 -3
  140. torch_geometric/nn/conv/hgt_conv.py +1 -1
  141. torch_geometric/nn/conv/message_passing.py +138 -87
  142. torch_geometric/nn/conv/mixhop_conv.py +1 -1
  143. torch_geometric/nn/conv/propagate.jinja +9 -1
  144. torch_geometric/nn/conv/rgcn_conv.py +5 -5
  145. torch_geometric/nn/conv/spline_conv.py +4 -4
  146. torch_geometric/nn/conv/x_conv.py +3 -2
  147. torch_geometric/nn/dense/linear.py +11 -6
  148. torch_geometric/nn/fx.py +3 -3
  149. torch_geometric/nn/model_hub.py +3 -1
  150. torch_geometric/nn/models/__init__.py +10 -2
  151. torch_geometric/nn/models/deep_graph_infomax.py +1 -2
  152. torch_geometric/nn/models/dimenet_utils.py +5 -7
  153. torch_geometric/nn/models/g_retriever.py +230 -0
  154. torch_geometric/nn/models/git_mol.py +336 -0
  155. torch_geometric/nn/models/glem.py +385 -0
  156. torch_geometric/nn/models/gnnff.py +0 -1
  157. torch_geometric/nn/models/graph_unet.py +12 -3
  158. torch_geometric/nn/models/jumping_knowledge.py +63 -4
  159. torch_geometric/nn/models/lightgcn.py +1 -1
  160. torch_geometric/nn/models/metapath2vec.py +5 -5
  161. torch_geometric/nn/models/molecule_gpt.py +222 -0
  162. torch_geometric/nn/models/node2vec.py +2 -3
  163. torch_geometric/nn/models/schnet.py +2 -1
  164. torch_geometric/nn/models/signed_gcn.py +3 -3
  165. torch_geometric/nn/module_dict.py +2 -2
  166. torch_geometric/nn/nlp/__init__.py +9 -0
  167. torch_geometric/nn/nlp/llm.py +329 -0
  168. torch_geometric/nn/nlp/sentence_transformer.py +134 -0
  169. torch_geometric/nn/nlp/vision_transformer.py +33 -0
  170. torch_geometric/nn/norm/batch_norm.py +1 -1
  171. torch_geometric/nn/parameter_dict.py +2 -2
  172. torch_geometric/nn/pool/__init__.py +21 -5
  173. torch_geometric/nn/pool/cluster_pool.py +145 -0
  174. torch_geometric/nn/pool/connect/base.py +0 -1
  175. torch_geometric/nn/pool/edge_pool.py +1 -1
  176. torch_geometric/nn/pool/graclus.py +4 -2
  177. torch_geometric/nn/pool/pool.py +8 -2
  178. torch_geometric/nn/pool/select/base.py +0 -1
  179. torch_geometric/nn/pool/voxel_grid.py +3 -2
  180. torch_geometric/nn/resolver.py +1 -1
  181. torch_geometric/nn/sequential.jinja +10 -23
  182. torch_geometric/nn/sequential.py +204 -78
  183. torch_geometric/nn/summary.py +1 -1
  184. torch_geometric/nn/to_hetero_with_bases_transformer.py +19 -19
  185. torch_geometric/profile/__init__.py +2 -0
  186. torch_geometric/profile/nvtx.py +66 -0
  187. torch_geometric/profile/profiler.py +30 -19
  188. torch_geometric/resolver.py +1 -1
  189. torch_geometric/sampler/base.py +34 -13
  190. torch_geometric/sampler/neighbor_sampler.py +11 -10
  191. torch_geometric/sampler/utils.py +1 -1
  192. torch_geometric/template.py +1 -0
  193. torch_geometric/testing/__init__.py +6 -2
  194. torch_geometric/testing/decorators.py +56 -22
  195. torch_geometric/testing/feature_store.py +1 -1
  196. torch_geometric/transforms/__init__.py +2 -0
  197. torch_geometric/transforms/add_metapaths.py +5 -5
  198. torch_geometric/transforms/add_positional_encoding.py +1 -1
  199. torch_geometric/transforms/delaunay.py +65 -14
  200. torch_geometric/transforms/face_to_edge.py +32 -3
  201. torch_geometric/transforms/gdc.py +7 -6
  202. torch_geometric/transforms/laplacian_lambda_max.py +3 -3
  203. torch_geometric/transforms/mask.py +5 -1
  204. torch_geometric/transforms/node_property_split.py +1 -2
  205. torch_geometric/transforms/pad.py +7 -6
  206. torch_geometric/transforms/random_link_split.py +1 -1
  207. torch_geometric/transforms/remove_self_loops.py +36 -0
  208. torch_geometric/transforms/svd_feature_reduction.py +1 -1
  209. torch_geometric/transforms/to_sparse_tensor.py +1 -1
  210. torch_geometric/transforms/two_hop.py +1 -1
  211. torch_geometric/transforms/virtual_node.py +2 -1
  212. torch_geometric/typing.py +43 -6
  213. torch_geometric/utils/__init__.py +5 -1
  214. torch_geometric/utils/_negative_sampling.py +1 -1
  215. torch_geometric/utils/_normalize_edge_index.py +46 -0
  216. torch_geometric/utils/_scatter.py +38 -12
  217. torch_geometric/utils/_subgraph.py +4 -0
  218. torch_geometric/utils/_tree_decomposition.py +2 -2
  219. torch_geometric/utils/augmentation.py +1 -1
  220. torch_geometric/utils/convert.py +12 -8
  221. torch_geometric/utils/geodesic.py +24 -22
  222. torch_geometric/utils/hetero.py +1 -1
  223. torch_geometric/utils/map.py +8 -2
  224. torch_geometric/utils/smiles.py +65 -27
  225. torch_geometric/utils/sparse.py +39 -25
  226. torch_geometric/visualization/graph.py +3 -4
@@ -1,15 +1,14 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.3
2
2
  Name: pyg-nightly
3
- Version: 2.6.0.dev20240318
3
+ Version: 2.7.0.dev20250115
4
4
  Summary: Graph Neural Network Library for PyTorch
5
5
  Keywords: deep-learning,pytorch,geometric-deep-learning,graph-neural-networks,graph-convolutional-networks
6
6
  Author-email: Matthias Fey <matthias@pyg.org>
7
- Requires-Python: >=3.8
7
+ Requires-Python: >=3.9
8
8
  Description-Content-Type: text/markdown
9
9
  Classifier: Development Status :: 5 - Production/Stable
10
10
  Classifier: License :: OSI Approved :: MIT License
11
11
  Classifier: Programming Language :: Python
12
- Classifier: Programming Language :: Python :: 3.8
13
12
  Classifier: Programming Language :: Python :: 3.9
14
13
  Classifier: Programming Language :: Python :: 3.10
15
14
  Classifier: Programming Language :: Python :: 3.11
@@ -22,8 +21,6 @@ Requires-Dist: numpy
22
21
  Requires-Dist: psutil>=5.8.0
23
22
  Requires-Dist: pyparsing
24
23
  Requires-Dist: requests
25
- Requires-Dist: scikit-learn
26
- Requires-Dist: scipy
27
24
  Requires-Dist: tqdm
28
25
  Requires-Dist: matplotlib ; extra == "benchmark"
29
26
  Requires-Dist: networkx ; extra == "benchmark"
@@ -34,13 +31,15 @@ Requires-Dist: ipython ; extra == "dev"
34
31
  Requires-Dist: matplotlib-inline ; extra == "dev"
35
32
  Requires-Dist: pre-commit ; extra == "dev"
36
33
  Requires-Dist: torch_geometric[test] ; extra == "dev"
34
+ Requires-Dist: scipy ; extra == "full"
35
+ Requires-Dist: scikit-learn ; extra == "full"
37
36
  Requires-Dist: ase ; extra == "full"
38
37
  Requires-Dist: captum<0.7.0 ; extra == "full"
39
38
  Requires-Dist: graphviz ; extra == "full"
40
39
  Requires-Dist: h5py ; extra == "full"
41
40
  Requires-Dist: matplotlib ; extra == "full"
42
41
  Requires-Dist: networkx ; extra == "full"
43
- Requires-Dist: numba ; extra == "full"
42
+ Requires-Dist: numba<0.60.0 ; extra == "full"
44
43
  Requires-Dist: opt_einsum ; extra == "full"
45
44
  Requires-Dist: pandas ; extra == "full"
46
45
  Requires-Dist: pgmpy ; extra == "full"
@@ -56,7 +55,7 @@ Requires-Dist: torch_geometric[graphgym, modelhub] ; extra == "full"
56
55
  Requires-Dist: torchmetrics ; extra == "full"
57
56
  Requires-Dist: trimesh ; extra == "full"
58
57
  Requires-Dist: protobuf<4.21 ; extra == "graphgym"
59
- Requires-Dist: pytorch-lightning ; extra == "graphgym"
58
+ Requires-Dist: pytorch-lightning<2.3.0 ; extra == "graphgym"
60
59
  Requires-Dist: yacs ; extra == "graphgym"
61
60
  Requires-Dist: huggingface_hub ; extra == "modelhub"
62
61
  Requires-Dist: onnx ; extra == "test"
@@ -92,7 +91,7 @@ ______________________________________________________________________
92
91
  **PyG** *(PyTorch Geometric)* is a library built upon [PyTorch](https://pytorch.org/) to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.
93
92
 
94
93
  It consists of various methods for deep learning on graphs and other irregular structures, also known as *[geometric deep learning](http://geometricdeeplearning.com/)*, from a variety of published papers.
95
- In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, [multi GPU-support](https://github.com/pyg-team/pytorch_geometric/tree/master/examples/multi_gpu), [`torch.compile`](https://pytorch-geometric.readthedocs.io/en/latest/advanced/compile.html) support, [`DataPipe`](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/datapipe.py) support, a large number of common benchmark datasets (based on simple interfaces to create your own), the [GraphGym](https://pytorch-geometric.readthedocs.io/en/latest/advanced/graphgym.html) experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.
94
+ In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, [multi GPU-support](https://github.com/pyg-team/pytorch_geometric/tree/master/examples/multi_gpu), [`torch.compile`](https://pytorch-geometric.readthedocs.io/en/latest/advanced/compile.html) support, [`DataPipe`](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/datapipe.py) support, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.
96
95
 
97
96
  **[Click here to join our Slack community!][slack-url]**
98
97
 
@@ -123,7 +122,6 @@ Whether you are a machine learning researcher or first-time user of machine lear
123
122
  Making modifications to existing models or creating new architectures is simple, thanks to its easy-to-use message passing API, and a variety of operators and utility functions.
124
123
  - **Large-scale real-world GNN models**:
125
124
  We focus on the need of GNN applications in challenging real-world scenarios, and support learning on diverse types of graphs, including but not limited to: scalable GNNs for graphs with millions of nodes; dynamic GNNs for node predictions over time; heterogeneous GNNs with multiple node types and edge types.
126
- - **GraphGym integration**: GraphGym lets users easily reproduce GNN experiments, is able to launch and analyze thousands of different GNN configurations, and is customizable by registering new modules to a GNN learning pipeline.
127
125
 
128
126
  ## Quick Tour for New Users
129
127
 
@@ -186,7 +184,7 @@ More information about evaluating final model performance can be found in the co
186
184
  In addition to the easy application of existing GNNs, PyG makes it simple to implement custom Graph Neural Networks (see [here](https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html) for the accompanying tutorial).
187
185
  For example, this is all it takes to implement the [edge convolutional layer](https://arxiv.org/abs/1801.07829) from Wang *et al.*:
188
186
 
189
- $$x_i^{\\prime} ~ = ~ \\max\_{j \\in \\mathcal{N}(i)} ~ \\textrm{MLP}\_{\\theta} \\left( \[ ~ x_i, ~ x_j - x_i ~ \] \\right)$$
187
+ $$x_i^{\\prime} ~ = ~ \\max\_{j \\in \\mathcal{N}(i)} ~ \\textrm{MLP}\_{\\theta} \\left( [ ~ x_i, ~ x_j - x_i ~ ] \\right)$$
190
188
 
191
189
  ```python
192
190
  import torch
@@ -215,20 +213,6 @@ class EdgeConv(MessagePassing):
215
213
  return self.mlp(edge_features) # shape [num_edges, out_channels]
216
214
  ```
217
215
 
218
- ### Manage experiments with GraphGym
219
-
220
- GraphGym allows you to manage and launch GNN experiments, using a highly modularized pipeline (see [here](https://pytorch-geometric.readthedocs.io/en/latest/advanced/graphgym.html) for the accompanying tutorial).
221
-
222
- ```
223
- git clone https://github.com/pyg-team/pytorch_geometric.git
224
- cd pytorch_geometric/graphgym
225
- bash run_single.sh # run a single GNN experiment (node/edge/graph-level)
226
- bash run_batch.sh # run a batch of GNN experiments, using differnt GNN designs/datasets/tasks
227
- ```
228
-
229
- Users are highly encouraged to check out the [documentation](https://pytorch-geometric.readthedocs.io/en/latest), which contains additional tutorials on the essential functionalities of PyG, including data handling, creation of datasets and a full list of implemented methods, transforms, and datasets.
230
- For a quick start, check out our [examples](https://github.com/pyg-team/pytorch_geometric/tree/master/examples) in `examples/`.
231
-
232
216
  ## Architecture Overview
233
217
 
234
218
  PyG provides a multi-layer framework that enables users to build Graph Neural Network solutions on both low and high levels.
@@ -267,7 +251,7 @@ These GNN layers can be stacked together to create Graph Neural Network models.
267
251
  - **[EGConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.EGConv.html)** from Tailor *et al.*: [Adaptive Filters and Aggregator Fusion for Efficient Graph Convolutions](https://arxiv.org/abs/2104.01481) (GNNSys 2021) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/egc.py)\]
268
252
  - **[GATv2Conv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GATv2Conv.html)** from Brody *et al.*: [How Attentive are Graph Attention Networks?](https://arxiv.org/abs/2105.14491) (ICLR 2022)
269
253
  - **[TransformerConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.TransformerConv.html)** from Shi *et al.*: [Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification](https://arxiv.org/abs/2009.03509) (CoRR 2020) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/unimp_arxiv.py)\]
270
- - **[SAGEConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_products_sage.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup_ppi.py)\]
254
+ - **[SAGEConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.SAGEConv.html)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_train.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_sage_unsup_ppi.py)\]
271
255
  - **[GraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GraphConv.html)** from, *e.g.*, Morris *et al.*: [Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks](https://arxiv.org/abs/1810.02244) (AAAI 2019)
272
256
  - **[GatedGraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.GatedGraphConv.html)** from Li *et al.*: [Gated Graph Sequence Neural Networks](https://arxiv.org/abs/1511.05493) (ICLR 2016)
273
257
  - **[ResGatedGraphConv](https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.ResGatedGraphConv.html)** from Bresson and Laurent: [Residual Gated Graph ConvNets](https://arxiv.org/abs/1711.07553) (CoRR 2017)
@@ -410,7 +394,7 @@ Such application is challenging since the entire graph, its associated features
410
394
  Many state-of-the-art scalability approaches tackle this challenge by sampling neighborhoods for mini-batch training, graph clustering and partitioning, or by using simplified GNN models.
411
395
  These approaches have been implemented in PyG, and can benefit from the above GNN layers, operators and models.
412
396
 
413
- - **[NeighborLoader](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.NeighborLoader)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_products_sage.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_products_gat.py), [**Example4**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/hetero/to_hetero_mag.py)\]
397
+ - **[NeighborLoader](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.NeighborLoader)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ogbn_train.py), [**Example3**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/hetero/to_hetero_mag.py)\]
414
398
  - **[ClusterGCN](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.ClusterLoader)** from Chiang *et al.*: [Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks](https://arxiv.org/abs/1905.07953) (KDD 2019) \[[**Example1**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/cluster_gcn_reddit.py), [**Example2**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/cluster_gcn_ppi.py)\]
415
399
  - **[GraphSAINT](https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.GraphSAINTSampler)** from Zeng *et al.*: [GraphSAINT: Graph Sampling Based Inductive Learning Method](https://arxiv.org/abs/1907.04931) (ICLR 2020) \[[**Example**](https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_saint.py)\]
416
400
 
@@ -425,7 +409,7 @@ These approaches have been implemented in PyG, and can benefit from the above GN
425
409
 
426
410
  ## Installation
427
411
 
428
- PyG is available for Python 3.8 to Python 3.12.
412
+ PyG is available for Python 3.9 to Python 3.12.
429
413
 
430
414
  ### Anaconda
431
415
 
@@ -462,39 +446,39 @@ We recommend to start with a minimal installation, and install additional depend
462
446
 
463
447
  For ease of installation of these extensions, we provide `pip` wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
464
448
 
465
- #### PyTorch 2.2
449
+ #### PyTorch 2.5
466
450
 
467
- To install the binaries for PyTorch 2.2.0, simply run
451
+ To install the binaries for PyTorch 2.5.0, simply run
468
452
 
469
453
  ```
470
- pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.2.0+${CUDA}.html
454
+ pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.5.0+${CUDA}.html
471
455
  ```
472
456
 
473
- where `${CUDA}` should be replaced by either `cpu`, `cu118`, or `cu121` depending on your PyTorch installation.
457
+ where `${CUDA}` should be replaced by either `cpu`, `cu118`, `cu121`, or `cu124` depending on your PyTorch installation.
474
458
 
475
- | | `cpu` | `cu118` | `cu121` |
476
- | ----------- | ----- | ------- | ------- |
477
- | **Linux** | ✅ | ✅ | ✅ |
478
- | **Windows** | ✅ | ✅ | ✅ |
479
- | **macOS** | ✅ | | |
459
+ | | `cpu` | `cu118` | `cu121` | `cu124` |
460
+ | ----------- | ----- | ------- | ------- | ------- |
461
+ | **Linux** | ✅ | ✅ | ✅ | ✅ |
462
+ | **Windows** | ✅ | ✅ | ✅ | ✅ |
463
+ | **macOS** | ✅ | | | |
480
464
 
481
- #### PyTorch 2.1
465
+ #### PyTorch 2.4
482
466
 
483
- To install the binaries for PyTorch 2.1.0, simply run
467
+ To install the binaries for PyTorch 2.4.0, simply run
484
468
 
485
469
  ```
486
- pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.1.0+${CUDA}.html
470
+ pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.4.0+${CUDA}.html
487
471
  ```
488
472
 
489
- where `${CUDA}` should be replaced by either `cpu`, `cu118`, or `cu121` depending on your PyTorch installation.
473
+ where `${CUDA}` should be replaced by either `cpu`, `cu118`, `cu121`, or `cu124` depending on your PyTorch installation.
490
474
 
491
- | | `cpu` | `cu118` | `cu121` |
492
- | ----------- | ----- | ------- | ------- |
493
- | **Linux** | ✅ | ✅ | ✅ |
494
- | **Windows** | ✅ | ✅ | ✅ |
495
- | **macOS** | ✅ | | |
475
+ | | `cpu` | `cu118` | `cu121` | `cu124` |
476
+ | ----------- | ----- | ------- | ------- | ------- |
477
+ | **Linux** | ✅ | ✅ | ✅ | ✅ |
478
+ | **Windows** | ✅ | ✅ | ✅ | ✅ |
479
+ | **macOS** | ✅ | | | |
496
480
 
497
- **Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0, PyTorch 1.12.0/1.12.1, PyTorch 1.13.0/1.13.1, and PyTorch 2.0.0 (following the same procedure).
481
+ **Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0, PyTorch 1.12.0/1.12.1, PyTorch 1.13.0/1.13.1, PyTorch 2.0.0/2.0.1, PyTorch 2.1.0/2.1.1/2.1.2, PyTorch 2.2.0/2.2.1/2.2.2, and PyTorch 2.3.0/2.3.1 (following the same procedure).
498
482
  **For older versions, you might need to explicitly specify the latest supported version number** or install via `pip install --no-index` in order to prevent a manual installation from source.
499
483
  You can look up the latest supported version number [here](https://data.pyg.org/whl).
500
484