pyerualjetwork 5b3__py3-none-any.whl → 5.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -11,10 +11,10 @@ training, and both detailed and simplified memory management.
11
11
 
12
12
  Library (CPU) Main Modules:
13
13
  ---------------------------
14
- - neu
15
- - ene
16
- - data_operations
17
- - model_operations
14
+ - neu_cpu
15
+ - ene_cpu
16
+ - data_operations_cpu
17
+ - model_operations_cpu
18
18
 
19
19
  Library (GPU) Main Modules:
20
20
  ---------------------------
@@ -27,9 +27,13 @@ Memory Module:
27
27
  --------------
28
28
  - memory_operations
29
29
 
30
+ Issue Solver Module:
31
+ --------------
32
+ - issue_solver
33
+
30
34
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
31
35
 
32
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
36
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
33
37
 
34
38
  - Author: Hasan Can Beydili
35
39
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -38,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_A
38
42
  - Contact: tchasancan@gmail.com
39
43
  """
40
44
 
41
- __version__ = "5b3"
45
+ __version__ = "5.0.2"
42
46
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
43
47
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
44
48
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
@@ -1,9 +1,9 @@
1
1
  """
2
2
 
3
3
 
4
- Data Operations
5
- ===============
6
- This module contains functions for handling all operational processes related to data and datasets.
4
+ Data Operations on CPU
5
+ ======================
6
+ This module contains functions for handling all operational processes related to data and datasets on CPU memory(RAM).
7
7
 
8
8
  Module functions:
9
9
  -----------------
@@ -19,7 +19,7 @@ Module functions:
19
19
 
20
20
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
21
21
 
22
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
22
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
23
23
 
24
24
  - Author: Hasan Can Beydili
25
25
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -3,7 +3,7 @@
3
3
 
4
4
  Data Operations on GPU (CUDA)
5
5
  =============================
6
- This module contains functions for handling all operational processes related to data and datasets on GPU memory.
6
+ This module contains functions for handling all operational processes related to data and datasets on CUDA GPU memory(VRAM).
7
7
 
8
8
  Module functions:
9
9
  ---------------
@@ -1,10 +1,10 @@
1
1
  """
2
2
 
3
3
 
4
- ENE (Eugenic NeuroEvolution)
5
- ============================
4
+ ENE (Eugenic NeuroEvolution) on CPU
5
+ ===================================
6
6
 
7
- This module contains all the functions necessary for implementing and testing the ENE (Eugenic NeuroEvolution) algorithm.
7
+ This module contains all the functions necessary for implementing and testing the ENE (Eugenic NeuroEvolution) algorithm on CPU.
8
8
  For more information about the ENE algorithm: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PLAN/PLAN.pdf
9
9
 
10
10
  Module functions:
@@ -19,7 +19,7 @@ Module functions:
19
19
 
20
20
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
21
21
 
22
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
22
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
23
23
 
24
24
  - Author: Hasan Can Beydili
25
25
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -34,9 +34,9 @@ import math
34
34
  import copy
35
35
 
36
36
  ### LIBRARY IMPORTS ###
37
- from .data_operations import normalization, non_neg_normalization
37
+ from .data_operations_cpu import normalization, non_neg_normalization
38
38
  from .ui import loading_bars, initialize_loading_bar
39
- from .activation_functions import apply_activation, all_activations
39
+ from .activation_functions_cpu import apply_activation, all_activations
40
40
 
41
41
  def define_genomes(input_shape, output_shape, population_size, neurons=[], activation_functions=[], dtype=np.float32):
42
42
  """
@@ -280,7 +280,7 @@ def evolver(weights,
280
280
 
281
281
  Example:
282
282
  ```python
283
- weights, activations = planeat.evolver(weights, activations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
283
+ weights, activations = ene_cpu.evolver(weights, activations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
284
284
  ```
285
285
 
286
286
  - The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
@@ -2,7 +2,7 @@
2
2
 
3
3
 
4
4
  ENE (Eugenic NeuroEvolution) on CUDA
5
- ======================================
5
+ ====================================
6
6
 
7
7
  This module contains all the functions necessary for implementing and testing the ENE (Eugenic NeuroEvolution) algorithm on CUDA GPU.
8
8
  For more information about the ENE algorithm: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PLAN/PLAN.pdf
@@ -19,7 +19,7 @@ Module functions:
19
19
 
20
20
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
21
21
 
22
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
22
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
23
23
 
24
24
  - Author: Hasan Can Beydili
25
25
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -280,7 +280,7 @@ def evolver(weights,
280
280
 
281
281
  Example:
282
282
  ```python
283
- weights, activations = planeat_cuda.evolver(weights, activations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
283
+ weights, activations = ene_cuda.evolver(weights, activations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
284
284
  ```
285
285
 
286
286
  - The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
@@ -13,4 +13,5 @@ def wals(acc, loss, acc_impact, loss_impact):
13
13
  loss += np.finfo(float).eps
14
14
  loss_impact += np.finfo(float).eps
15
15
 
16
- return (acc * acc_impact) + ((loss_impact / loss) * loss_impact)
16
+ return (acc * acc_impact) + ((loss_impact / loss) * loss_impact)
17
+ import __init__
pyerualjetwork/help.py CHANGED
@@ -1,4 +1,4 @@
1
- from activation_functions import all_activations
1
+ from pyerualjetwork.activation_functions_cpu import all_activations
2
2
 
3
3
 
4
4
  def activation_potentiation():
@@ -0,0 +1,77 @@
1
+ """
2
+
3
+
4
+ Issue Solver
5
+ ============
6
+ This module provides ready-to-use functions to identify potential issues caused by version incompatibilities in major updates,
7
+ ensuring users are not affected by such problems. PyereualJetwork aims to offer a seamless experience for its users.
8
+
9
+
10
+ Module functions:
11
+ -----------------
12
+ - update_model_to_v5()
13
+
14
+ Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
15
+
16
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
17
+
18
+ - Author: Hasan Can Beydili
19
+ - YouTube: https://www.youtube.com/@HasanCanBeydili
20
+ - Linkedin: https://www.linkedin.com/in/hasan-can-beydili-77a1b9270/
21
+ - Instagram: https://www.instagram.com/canbeydilj
22
+ - Contact: tchasancan@gmail.com
23
+ """
24
+
25
+ def update_model_to_v5(model_name, model_path, is_cuda):
26
+
27
+ """
28
+ update_model_to_v5 function helps users for update models from older versions to newer versions.
29
+
30
+ :param str model_name: Name of saved model.
31
+
32
+ :param str model_path: Path of saved model.
33
+
34
+ :param bool is_cuda: If model saved with cuda modules.
35
+
36
+ :return: prints terminal if succes.
37
+ """
38
+
39
+ if is_cuda:
40
+
41
+ from .model_operations_cuda import (get_act,
42
+ get_weights,
43
+ get_scaler,
44
+ get_acc,
45
+ get_model_type,
46
+ get_weights_type,
47
+ get_weights_format,
48
+ load_model,
49
+ save_model)
50
+ else:
51
+
52
+ from .model_operations_cpu import (get_act,
53
+ get_weights,
54
+ get_scaler,
55
+ get_acc,
56
+ get_model_type,
57
+ get_weights_type,
58
+ get_weights_format,
59
+ load_model,
60
+ save_model)
61
+
62
+ model = load_model(model_name, model_path)
63
+
64
+ activations = model[get_act()]
65
+ weights = model[get_weights()]
66
+ scaler_params = model[get_scaler()]
67
+ test_acc = model[get_acc()]
68
+ model_type = model[get_model_type()]
69
+ weights_type = model[get_weights_type()]
70
+ weights_format = model[get_weights_format()]
71
+
72
+ from .__init__ import __version__
73
+ device_version = __version__
74
+
75
+ save_model("updated_" + model_name, weights, model_type, scaler_params, test_acc, model_path, activations, weights_type, weights_format)
76
+
77
+ print(f"\nModel succesfully updated to {device_version}. NOTE: This operation just for compatibility. You may still have perfomance issues in this situation please install model's version of pyerualjetwork.")
@@ -15,7 +15,7 @@ Module functions:
15
15
 
16
16
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
17
17
 
18
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
18
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
19
19
 
20
20
  - Author: Hasan Can Beydili
21
21
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -13,7 +13,7 @@ def metrics(y_ts, test_preds, average='weighted'):
13
13
  tuple: Precision, recall, F1 score.
14
14
  """
15
15
 
16
- from .data_operations import decode_one_hot
16
+ from .data_operations_cpu import decode_one_hot
17
17
 
18
18
  y_test_d = decode_one_hot(y_ts)
19
19
  y_test_d = np.array(y_test_d)
@@ -1,7 +1,7 @@
1
1
  import cupy as cp
2
2
 
3
3
  def metrics(y_ts, test_preds, average='weighted'):
4
- from .data_operations import decode_one_hot
4
+ from .data_operations_cpu import decode_one_hot
5
5
  y_test_d = cp.array(decode_one_hot(y_ts))
6
6
  y_pred = cp.array(test_preds)
7
7
 
@@ -1,9 +1,9 @@
1
1
  """
2
2
 
3
3
 
4
- Model Operations
5
- ================
6
- This module hosts functions for handling all operational processes related to models, including:
4
+ Model Operations on CPU
5
+ =======================
6
+ This module hosts functions for handling all operational processes related to models on CPU, including:
7
7
 
8
8
  - Saving and loading models
9
9
  - Making predictions from memory
@@ -31,7 +31,7 @@ Module functions:
31
31
 
32
32
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
33
33
 
34
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
34
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
35
35
 
36
36
  - Author: Hasan Can Beydili
37
37
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -92,7 +92,7 @@ def save_model(model_name,
92
92
  No return.
93
93
  """
94
94
 
95
- from .visualizations import draw_model_architecture
95
+ from .visualizations_cpu import draw_model_architecture
96
96
 
97
97
  if model_type != 'PLAN' and model_type != 'MLP':
98
98
  raise ValueError("model_type parameter must be 'PLAN' or 'MLP'.")
@@ -176,11 +176,14 @@ def save_model(model_name,
176
176
 
177
177
  scaler_params.append(' ')
178
178
 
179
+ from .__init__ import __version__
180
+
179
181
  data = {'MODEL NAME': model_name,
180
182
  'MODEL TYPE': model_type,
181
183
  'CLASS COUNT': class_count,
182
184
  'NEURON COUNT': NeuronCount,
183
185
  'SYNAPSE COUNT': SynapseCount,
186
+ 'VERSION': __version__,
184
187
  'TEST ACCURACY': test_acc,
185
188
  'SAVE DATE': datetime.now(),
186
189
  'WEIGHTS TYPE': weights_type,
@@ -271,16 +274,18 @@ def load_model(model_name,
271
274
  model_path (str): Path where the model is saved.
272
275
 
273
276
  Returns:
274
- lists: (list[df_elements]), DataFrame of the model
277
+ lists: Weights, None, test_accuracy, activations, scaler_params, None, model_type, weight_type, weight_format, device_version, (list[df_elements])=Pandas DataFrame of the model
275
278
  """
276
279
 
280
+ from .__init__ import __version__
281
+
277
282
  try:
278
283
 
279
284
  df = pd.read_pickle(model_path + model_name + '.pkl')
280
285
 
281
286
  except:
282
287
 
283
- print(Fore.RED + "ERROR: Model Path error. acceptable form: 'C:/Users/hasancanbeydili/Desktop/denemePLAN/' from: load_model" + Style.RESET_ALL)
288
+ print(Fore.RED + "ERROR: Model Path or Model Name error. acceptable form: 'C:/Users/hasancanbeydili/Desktop/denemePLAN/' from: load_model" + Style.RESET_ALL)
284
289
 
285
290
  sys.exit()
286
291
 
@@ -305,6 +310,22 @@ def load_model(model_name,
305
310
  model_name = str(df['MODEL NAME'].iloc[0])
306
311
  model_type = str(df['MODEL TYPE'].iloc[0])
307
312
  WeightType = str(df['WEIGHTS TYPE'].iloc[0])
313
+ WeightFormat = str(df['WEIGHTS FORMAT'].iloc[0])
314
+ test_acc = str(df['TEST ACCURACY'].iloc[0])
315
+
316
+ device_version = __version__
317
+
318
+ try:
319
+ model_version = str(df['VERSION'].iloc[0])
320
+ if model_version != device_version:
321
+ message = (
322
+ Fore.MAGENTA + f"WARNING: Your PyerualJetwork version({device_version}) is different from this model's version({model_version}).\nIf you have a performance issue, please install this model version. Use this: pip install pyerualjetwork=={model_version} or look issue_solver module." +
323
+ Style.RESET_ALL
324
+ )
325
+ print(message)
326
+
327
+ except:
328
+ pass # Version check only in >= 5.0.2
308
329
 
309
330
  if model_type == 'MLP': allow_pickle = True
310
331
  else: allow_pickle = False
@@ -326,7 +347,7 @@ def load_model(model_name,
326
347
  if WeightType == 'mat':
327
348
  W = W['w']
328
349
 
329
- return W, None, None, activations, scaler_params, None, model_type
350
+ return W, None, test_acc, activations, scaler_params, None, model_type, WeightType, WeightFormat, device_version, df
330
351
 
331
352
 
332
353
 
@@ -347,8 +368,8 @@ def predict_from_storage(Input, model_name, model_path=''):
347
368
  ndarray: Output from the model.
348
369
  """
349
370
 
350
- from .activation_functions import apply_activation
351
- from .data_operations import standard_scaler
371
+ from .activation_functions_cpu import apply_activation
372
+ from .data_operations_cpu import standard_scaler
352
373
 
353
374
  try:
354
375
 
@@ -436,8 +457,8 @@ def predict_from_memory(Input, W, scaler_params=None, activations=['linear'], is
436
457
  ndarray: Output from the model.
437
458
  """
438
459
 
439
- from .data_operations import standard_scaler
440
- from .activation_functions import apply_activation
460
+ from .data_operations_cpu import standard_scaler
461
+ from .activation_functions_cpu import apply_activation
441
462
 
442
463
  try:
443
464
 
@@ -516,9 +537,32 @@ def get_scaler():
516
537
 
517
538
  return 4
518
539
 
540
+
519
541
  def get_preds_softmax():
520
542
 
521
543
  return 5
522
544
 
545
+
523
546
  def get_model_type():
524
- return 6
547
+
548
+ return 6
549
+
550
+
551
+ def get_weights_type():
552
+
553
+ return 7
554
+
555
+
556
+ def get_weights_format():
557
+
558
+ return 8
559
+
560
+
561
+ def get_model_version():
562
+
563
+ return 9
564
+
565
+
566
+ def get_model_df():
567
+
568
+ return 10
@@ -31,7 +31,7 @@ Module functions:
31
31
 
32
32
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
33
33
 
34
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
34
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
35
35
 
36
36
  - Author: Hasan Can Beydili
37
37
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -60,7 +60,7 @@ def save_model(model_name,
60
60
  activations=['linear'],
61
61
  weights_type='npy',
62
62
  weights_format='raw',
63
- show_architecture=None,
63
+ show_architecture=False,
64
64
  show_info=True
65
65
  ):
66
66
 
@@ -192,12 +192,15 @@ def save_model(model_name,
192
192
  scaler_params[0] = scaler_params[0].get()
193
193
  scaler_params[1] = scaler_params[1].get()
194
194
 
195
+ from .__init__ import __version__
196
+
195
197
  data = {'MODEL NAME': model_name,
196
198
  'MODEL TYPE': model_type,
197
199
  'CLASS COUNT': class_count,
198
200
  'NEURON COUNT': NeuronCount,
199
201
  'SYNAPSE COUNT': SynapseCount,
200
202
  'TEST ACCURACY': test_acc,
203
+ 'VERSION': __version__,
201
204
  'SAVE DATE': datetime.now(),
202
205
  'WEIGHTS TYPE': weights_type,
203
206
  'WEIGHTS FORMAT': weights_format,
@@ -281,8 +284,10 @@ def load_model(model_name,
281
284
  model_path (str): Path where the model is saved.
282
285
 
283
286
  Returns:
284
- lists: (list[df_elements]), DataFrame of the model
287
+ lists: Weights, None, test_accuracy, activations, scaler_params, None, model_type, weight_type, weight_format, device_version, (list[df_elements])=Pandas DataFrame of the model
285
288
  """
289
+
290
+ from .__init__ import __version__
286
291
 
287
292
  try:
288
293
 
@@ -318,6 +323,22 @@ def load_model(model_name,
318
323
  model_name = str(df['MODEL NAME'].iloc[0])
319
324
  model_type = str(df['MODEL TYPE'].iloc[0])
320
325
  WeightType = str(df['WEIGHTS TYPE'].iloc[0])
326
+ WeightFormat = str(df['WEIGHTS FORMAT'].iloc[0])
327
+ test_acc = str(df['TEST ACCURACY'].iloc[0])
328
+
329
+ device_version = __version__
330
+
331
+ try:
332
+ model_version = str(df['VERSION'].iloc[0])
333
+ if model_version != device_version:
334
+ message = (
335
+ Fore.MAGENTA + f"WARNING: Your PyerualJetwork version({device_version}) is different from this model's version({model_version}).\nIf you have a performance issue, please install this model version. Use this: pip install pyerualjetwork=={model_version}" +
336
+ Style.RESET_ALL
337
+ )
338
+ print(message)
339
+
340
+ except:
341
+ pass # Version check only in >= 5.0.2
321
342
 
322
343
  if model_type == 'MLP': allow_pickle = True
323
344
  else: allow_pickle = False
@@ -343,7 +364,7 @@ def load_model(model_name,
343
364
  W = W.tolist()
344
365
  W = [cp.array(item) for item in W]
345
366
 
346
- return W, None, None, activations, scaler_params, None, model_type
367
+ return W, None, test_acc, activations, scaler_params, None, model_type, WeightType, WeightFormat, device_version, df
347
368
 
348
369
 
349
370
 
@@ -545,9 +566,32 @@ def get_scaler():
545
566
 
546
567
  return 4
547
568
 
569
+
548
570
  def get_preds_softmax():
549
571
 
550
572
  return 5
551
573
 
574
+
552
575
  def get_model_type():
553
- return 6
576
+
577
+ return 6
578
+
579
+
580
+ def get_weights_type():
581
+
582
+ return 7
583
+
584
+
585
+ def get_weights_format():
586
+
587
+ return 8
588
+
589
+
590
+ def get_model_version():
591
+
592
+ return 9
593
+
594
+
595
+ def get_model_df():
596
+
597
+ return 10
@@ -2,9 +2,9 @@
2
2
  """
3
3
 
4
4
 
5
- NEU (Neural Networks)
6
- =====================
7
- This module hosts functions for training and evaluating artificial neural networks for labeled classification tasks (for now).
5
+ NEU (Neural Networks) on CPU
6
+ ============================
7
+ This module hosts functions for training and evaluating artificial neural networks on CPU for labeled classification tasks (for now).
8
8
 
9
9
  Currently, two types of models can be trained:
10
10
 
@@ -21,7 +21,7 @@ Module functions:
21
21
 
22
22
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
23
23
 
24
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
24
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
25
25
 
26
26
  - Author: Hasan Can Beydili
27
27
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -35,13 +35,13 @@ import copy
35
35
 
36
36
  ### LIBRARY IMPORTS ###
37
37
  from .ui import loading_bars, initialize_loading_bar
38
- from .data_operations import normalization, batcher
39
- from .activation_functions import apply_activation, all_activations
40
- from .model_operations import get_acc, get_preds_softmax
38
+ from .data_operations_cpu import normalization, batcher
39
+ from .activation_functions_cpu import apply_activation, all_activations
40
+ from .model_operations_cpu import get_acc, get_preds_softmax
41
41
  from .memory_operations import optimize_labels
42
- from .loss_functions import categorical_crossentropy, binary_crossentropy
42
+ from .loss_functions_cpu import categorical_crossentropy, binary_crossentropy
43
43
  from .fitness_functions import wals
44
- from .visualizations import (
44
+ from .visualizations_cpu import (
45
45
  draw_neural_web,
46
46
  display_visualizations_for_learner,
47
47
  update_history_plots_for_learner,
@@ -71,7 +71,7 @@ def plan_fit(
71
71
 
72
72
  y_train (aray-like[num]): List or numarray of target labels. (one hot encoded)
73
73
 
74
- activations (list): For deeper PLAN networks, activation function parameters. For more information please run this code: plan.activations_list() default: [None] (optional)
74
+ activations (list): For deeper PLAN networks, activation function parameters. For more information please run this code: neu.activations_list() default: [None] (optional)
75
75
 
76
76
  W (numpy.ndarray): If you want to re-continue or update model
77
77
 
@@ -109,20 +109,20 @@ def learn(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1, p
109
109
 
110
110
  Why genetic optimization ENE(Eugenic NeuroEvolution) and not backpropagation?
111
111
  Because PLAN is different from other neural network architectures. In PLAN, the learnable parameters are not the weights; instead, the learnable parameters are the activation functions.
112
- Since activation functions are not differentiable, we cannot use gradient descent or backpropagation. However, I developed a more powerful genetic optimization algorithm: PLANEAT.
112
+ Since activation functions are not differentiable, we cannot use gradient descent or backpropagation. However, I developed a more powerful genetic optimization algorithm: ENE.
113
113
 
114
114
  :Args:
115
115
  :param x_train: (array-like): Training input data.
116
116
  :param y_train: (array-like): Labels for training data. one-hot encoded.
117
117
  :param optimizer: (function): Optimization technique with hyperparameters. (PLAN and MLP (both) using ENE for optimization.) Please use this: from pyerualjetwork.ene import evolver (and) optimizer = lambda *args, **kwargs: evolver(*args, 'here give your neat hyperparameters for example: activation_add_prob=0.85', **kwargs) Example:
118
118
  ```python
119
- optimizer = lambda *args, **kwargs: ene.evolver(*args,
119
+ optimizer = lambda *args, **kwargs: ene_cpu.evolver(*args,
120
120
  activation_add_prob=0.05,
121
121
  strategy='aggressive',
122
122
  policy='more_selective',
123
123
  **kwargs)
124
124
 
125
- model = neu.learn(x_train,
125
+ model = neu_cpu.learn(x_train,
126
126
  y_train,
127
127
  optimizer,
128
128
  fit_start=True,
@@ -158,7 +158,7 @@ def learn(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1, p
158
158
  tuple: A list for model parameters: [Weight matrix, Train Preds, Train Accuracy, [Activations functions]].
159
159
  """
160
160
 
161
- from .ene import define_genomes
161
+ from .ene_cpu import define_genomes
162
162
 
163
163
  data = 'Train'
164
164
 
@@ -21,7 +21,7 @@ Module functions:
21
21
 
22
22
  Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
23
23
 
24
- PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
24
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
25
25
 
26
26
  - Author: Hasan Can Beydili
27
27
  - YouTube: https://www.youtube.com/@HasanCanBeydili
@@ -70,7 +70,7 @@ def plan_fit(
70
70
  plan_fit Args:
71
71
  :param (aray-like[cupy]) x_train: (aray-like[cupy]): List or cupy array of input data.
72
72
  :param (aray-like[cupy]) y_train: List or cupy array of target labels. (one hot encoded)
73
- :param (list) activations: For deeper PLAN networks, activation function parameters. For more information please run this code: nn.activations_list() default: [None] (optional)
73
+ :param (list) activations: For deeper PLAN networks, activation function parameters. For more information please run this code: neu_cuda.activations_list() default: [None] (optional)
74
74
  W (cupy.ndarray, optional): If you want to re-continue or update model
75
75
  auto_normalization (bool, optional): Normalization may solves overflow problem. Default: False
76
76
  dtype (cupy.dtype, optional): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16.
@@ -179,7 +179,7 @@ def learn(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1, p
179
179
  x_train = transfer_to_cpu(x_train, dtype=x_train.dtype)
180
180
  y_train = transfer_to_cpu(y_train, dtype=y_train.dtype)
181
181
 
182
- from .data_operations import batcher
182
+ from .data_operations_cpu import batcher
183
183
 
184
184
  else:
185
185
  raise ValueError("memory parameter must be 'cpu' or 'gpu'.")
@@ -86,7 +86,7 @@ def draw_model_architecture(model_name, model_path=''):
86
86
  Visualizes the architecture of a neural network model with multiple inputs based on activation functions.
87
87
  """
88
88
 
89
- from .model_operations import load_model, get_scaler, get_act, get_weights
89
+ from .model_operations_cpu import load_model, get_scaler, get_act, get_weights
90
90
 
91
91
  model = load_model(model_name=model_name, model_path=model_path)
92
92
 
@@ -182,7 +182,7 @@ def draw_model_architecture(model_name, model_path=''):
182
182
 
183
183
  def draw_activations(x_train, activation):
184
184
 
185
- from . import activation_functions as af
185
+ from . import activation_functions_cpu as af
186
186
 
187
187
  if activation == 'sigmoid':
188
188
  result = af.Sigmoid(x_train)
@@ -327,10 +327,10 @@ def draw_activations(x_train, activation):
327
327
 
328
328
  def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activations):
329
329
 
330
- from .metrics import metrics, confusion_matrix, roc_curve
330
+ from .metrics_cpu import metrics, confusion_matrix, roc_curve
331
331
  from .ui import loading_bars, initialize_loading_bar
332
- from .data_operations import decode_one_hot
333
- from .model_operations import predict_model_ram
332
+ from .data_operations_cpu import decode_one_hot
333
+ from .model_operations_cpu import predict_model_ram
334
334
 
335
335
  bar_format_normal = loading_bars()[0]
336
336
 
@@ -455,8 +455,8 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activations):
455
455
 
456
456
  def plot_decision_boundary(x, y, activations, W, artist=None, ax=None):
457
457
 
458
- from .model_operations import predict_model_ram
459
- from .data_operations import decode_one_hot
458
+ from .model_operations_cpu import predict_model_ram
459
+ from .data_operations_cpu import decode_one_hot
460
460
 
461
461
  feature_indices = [0, 1]
462
462
 
@@ -513,8 +513,8 @@ def plot_decision_boundary(x, y, activations, W, artist=None, ax=None):
513
513
 
514
514
  def plot_decision_space(x, y, y_preds=None, s=100, color='tab20'):
515
515
 
516
- from .metrics import pca
517
- from .data_operations import decode_one_hot
516
+ from .metrics_cpu import pca
517
+ from .data_operations_cpu import decode_one_hot
518
518
 
519
519
  if x.shape[1] > 2:
520
520
 
@@ -707,7 +707,7 @@ def show():
707
707
 
708
708
  def initialize_visualization_for_learner(show_history, neurons_history, neural_web_history, x_train, y_train):
709
709
 
710
- from .data_operations import find_closest_factors
710
+ from .data_operations_cpu import find_closest_factors
711
711
  viz_objects = {}
712
712
 
713
713
  if show_history:
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5b3
4
- Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
3
+ Version: 5.0.2
4
+ Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
7
7
  Keywords: model evaluation,classification,potentiation learning artificial neural networks,NEAT,genetic algorithms,reinforcement learning,neural networks
@@ -26,16 +26,22 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
26
26
 
27
27
  pip install pyerualjetwork
28
28
 
29
- from pyerualjetwork import plan
30
- from pyerualjetwork import planeat
31
- from pyerualjetwork import data_operations
32
- from pyerualjetwork import model_operations
29
+ from pyerualjetwork import neu_cpu
30
+ from pyerualjetwork import ene_cpu
31
+ from pyerualjetwork import data_operations_cpu
32
+ from pyerualjetwork import model_operations_cpu
33
33
 
34
- from pyerualjetwork import plan_cuda
35
- from pyerualjetwork import planeat_cuda
34
+ from pyerualjetwork import neu_cuda
35
+ from pyerualjetwork import ene_cuda
36
36
  from pyerualjetwork import data_operations_cuda
37
37
  from pyerualjetwork import model_operations_cuda
38
38
 
39
+ PyerualJetwork has Issue Solver. This operation provides users ready-to-use functions to identify potential issues
40
+ caused by version incompatibilities in major updates, ensuring users are not affected by such problems.
41
+ PyereualJetwork aims to offer a seamless experience for its users.
42
+
43
+ from pyerualjetwork import issue_solver
44
+
39
45
  Optimized for Visual Studio Code
40
46
 
41
47
  requires=[
@@ -43,7 +49,7 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
43
49
  'tqdm==4.66.4',
44
50
  'pandas==2.2.2',
45
51
  'networkx==3.3',
46
- 'seaborn==0.13.2',
52
+ 'seaborn==0.13.2',
47
53
  'numpy==1.26.4',
48
54
  'matplotlib==3.9.0',
49
55
  'colorama==0.4.6',
@@ -57,10 +63,13 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
57
63
 
58
64
  ABOUT PYERUALJETWORK:
59
65
 
60
- PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques with optimized GPU acceleration. Its most important component is the PLAN (Potentiation Learning Artificial Neural Network) https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4862342. (THIS ARTICLE IS FIRST VERSION OF PLAN.) MODERN VERSION OF PLAN: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PLAN/PLAN.pdf
61
- Both the PLAN algorithm and the PyerualJetwork library were created by Author, and all rights are reserved by Author.
66
+ PyereualJetwork is a large, GPU-accelerated machine learning library in Python designed for professionals and researchers.
67
+ It features PLAN, MLP, and Deep Learning training, as well as ENE (Eugenic NeuroEvolution) for genetic optimization,
68
+ which can also be applied to genetic algorithms or Reinforcement Learning (RL) problems.
69
+ The library includes functions for data pre-processing, visualizations, model saving and loading, prediction and evaluation,
70
+ training, and both detailed and simplified memory management. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4862342. (THIS ARTICLE IS FIRST VERSION OF PLAN.) MODERN VERSION OF PLAN: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PLAN/PLAN.pdf
71
+ Both the PLAN algorithm ENE algorithm and the PyerualJetwork library were created by Author, and all rights are reserved by Author.
62
72
  PyerualJetwork is free to use for commercial business and individual users.
63
- As of 12/21/2024, the library includes PLAN and PLANEAT module, but other machine learning modules are expected to be added in the future.
64
73
 
65
74
  PyerualJetwork ready for both eager execution(like PyTorch) and static graph(like Tensorflow) concepts because PyerualJetwork using only functions.
66
75
  For example:
@@ -68,13 +77,13 @@ For example:
68
77
  fit function only fits given training data(suitable for dynamic graph) but learner function learns and optimize entire architecture(suitable for static graph). Or more deeper eager executions PyerualJetwork have: feed_forward function, list of activation functions, loss functions. You can create your unique model architecture. Move your data to GPU or CPU or manage how much should in GPU, Its all up to you.
69
78
  <br><br>
70
79
 
71
- PyerualJetworket includes Plan Vision, NLPlan, PLANEAT and at the between of both, Deep Plan.<br>
80
+ PyerualJetworket includes PLAN, MLP & ENE.<br>
72
81
 
73
82
  PLAN VISION:<br>
74
83
 
75
84
  ![PLAN VISION](https://github.com/HCB06/PyerualJetwork/blob/main/Media/PlanVision.jpg)
76
85
 
77
- You can create artificial intelligence models that perform computer vision tasks using the plan module:<br>
86
+ You can create artificial intelligence models that perform computer vision tasks using the neu module:<br>
78
87
 
79
88
  ![AUTONOMOUS](https://github.com/HCB06/PyerualJetwork/blob/main/Media/autonomous.gif)<br><br><br>
80
89
  ![XRAY](https://github.com/HCB06/PyerualJetwork/blob/main/Media/chest_xray.png)<br><br><br>
@@ -84,13 +93,13 @@ NLPlan:<br>
84
93
 
85
94
  ![NLPLAN](https://github.com/HCB06/PyerualJetwork/blob/main/Media/NLPlan.jpg)<br>
86
95
 
87
- You can create artificial intelligence models that perform natural language processing tasks using the plan module:
96
+ You can create artificial intelligence models that perform natural language processing tasks using the neu module:
88
97
 
89
98
  ![PLAN VISION](https://github.com/HCB06/PyerualJetwork/blob/main/Media/NLP.gif)
90
99
 
91
100
  PLANEAT:<br>
92
101
 
93
- You can create artificial intelligence models that perform reinforcement learning tasks and genetic optimization tasks using the planeat module:
102
+ You can create artificial intelligence models that perform reinforcement learning tasks and genetic optimization tasks using the ene module:
94
103
 
95
104
  ![PLANEAT](https://github.com/HCB06/PyerualJetwork/blob/main/Media/PLANEAT_1.gif)<br>
96
105
  ![PLANEAT](https://github.com/HCB06/PyerualJetwork/blob/main/Media/PLANEAT_2.gif)<br>
@@ -113,6 +122,6 @@ HOW DO I IMPORT IT TO MY PROJECT?
113
122
 
114
123
  Anaconda users can access the 'Anaconda Prompt' terminal from the Start menu and add the necessary library modules to the Python module search queue by typing "pip install pyerualjetwork" and pressing enter. If you are not using Anaconda, you can simply open the 'cmd' Windows command terminal from the Start menu and type "pip install PyerualJetwork". (Visual Studio Code reccomended) After installation, it's important to periodically open the terminal of the environment you are using and stay up to date by using the command "pip install PyerualJetwork --upgrade".
115
124
 
116
- After installing the module using "pip" you can now call the library module in your project environment. Use: “from pyerualjetwork import plan”. Now, you can call the necessary functions from the plan module.
125
+ After installing the module using "pip" you can now call the library module in your project environment. Use: “from pyerualjetwork import neu_cpu”. Now, you can call the necessary functions from the neu module.
117
126
 
118
- The PLAN algorithm will not be explained in this document. This document focuses on how professionals can integrate and use PyerualJetwork in their systems. However, briefly, the PLAN algorithm can be described as a classification algorithm. PLAN algorithm achieves this task with an incredibly energy-efficient, fast, and hyperparameter-free user-friendly approach. For more detailed information, you can check out ![PYERUALJETWORK USER MANUEL](https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf) file.
127
+ The PLAN algorithm & ENE algorithm will not be explained in this document. This document focuses on how professionals can integrate and use PyerualJetwork in their systems. However, briefly, the PLAN algorithm can be described as a classification algorithm. PLAN algorithm achieves this task with an incredibly energy-efficient, fast, and hyperparameter-free user-friendly approach. For more detailed information, you can check out ![PYERUALJETWORK USER MANUEL](https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf) file.
@@ -0,0 +1,26 @@
1
+ pyerualjetwork/__init__.py,sha256=z_I7fQb2UO1O5xO71zzt-zdLmw8ArbtlY_LrB6Yovyg,2726
2
+ pyerualjetwork/activation_functions_cpu.py,sha256=X7Kv8qv8oZq8hvTdUiV-GkFjKHRlKIQypRPXh6gdkm4,7614
3
+ pyerualjetwork/activation_functions_cuda.py,sha256=pefklsl9QuSVbKwiUUHeF_ExN0bICH7QIF1MfoMU40Q,7665
4
+ pyerualjetwork/data_operations_cpu.py,sha256=dLczgxNx8W_GIgBLageegVhv-aczjNYfohB-PPpOU4Y,16401
5
+ pyerualjetwork/data_operations_cuda.py,sha256=5zgyJGPjQuHyx6IHNkRwMguYhm-GcI6Hal49WNvw-bM,18536
6
+ pyerualjetwork/ene_cpu.py,sha256=2y5__d-vx7t5Ajs4IPuNnQe8ULR39Km_KQFNIUnalGA,45167
7
+ pyerualjetwork/ene_cuda.py,sha256=0tOIONUEDmvGZiCihzIHBrGVtRMPR1g23ZNfoI0i39s,45663
8
+ pyerualjetwork/fitness_functions.py,sha256=pUmAbUy5ex1Vpu6n_RRac_df-FR52gYIV8uxYS5H3tw,1252
9
+ pyerualjetwork/help.py,sha256=FcX8mxo1_mvoqONVXY0Kn7S09CDkhi0jwNmn8g9mYZc,804
10
+ pyerualjetwork/issue_solver.py,sha256=iNDYVNSc__N1ckyt84dw51Cdf_bd5vsmvdNtVBM4oCQ,3118
11
+ pyerualjetwork/loss_functions_cpu.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
12
+ pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
13
+ pyerualjetwork/memory_operations.py,sha256=g24d-cDuUFc0fOEtk3AJe-z_EBctYV5S4cY1rQ6VGiE,14279
14
+ pyerualjetwork/metrics_cpu.py,sha256=vbfMwS0ay2heMSa0GNo-ydLjQ8cfexbLwaREp4FKAtY,6081
15
+ pyerualjetwork/metrics_cuda.py,sha256=PWyJyexeqlPKb09LAcF55JvhZVeXLCu3P_siYq5m2gg,5065
16
+ pyerualjetwork/model_operations_cpu.py,sha256=Z-TU1vNkUOB6nfFYCj9mSZsq-VaSYqL1KxbG2Rxqnt0,17255
17
+ pyerualjetwork/model_operations_cuda.py,sha256=lTkedasKliBjiyq0Di3alH4BLUlocnHhCI3sq1XDwgE,18408
18
+ pyerualjetwork/neu_cpu.py,sha256=5K9oDNiTH6rVyOYo-2esw8ZLJ6M7-YLfiOyq_a9LBQU,25017
19
+ pyerualjetwork/neu_cuda.py,sha256=VS9YVsYe0DLaqGDCrKyVnYXehu8eE7qZycdaUHCyyM0,26030
20
+ pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
21
+ pyerualjetwork/visualizations_cpu.py,sha256=StyD1Hl1Gt55EMqR6tO3yVJZdPyGkOgCnQ75Zn8K6J8,28252
22
+ pyerualjetwork/visualizations_cuda.py,sha256=7lYrkOdrjwQGB3T4k_vI8UDxsm_TRjzaSSg9GhlNczs,28667
23
+ pyerualjetwork-5.0.2.dist-info/METADATA,sha256=tnE3ncDV2pNq1sFcbv8Z0d6QXL-y5gxLtgwD7N-F2pc,8126
24
+ pyerualjetwork-5.0.2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
25
+ pyerualjetwork-5.0.2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
26
+ pyerualjetwork-5.0.2.dist-info/RECORD,,
@@ -1,25 +0,0 @@
1
- pyerualjetwork/__init__.py,sha256=oRByBl-TW3JDnYYencDENYU_PkCV_f8piVIkK641M4g,2631
2
- pyerualjetwork/activation_functions.py,sha256=X7Kv8qv8oZq8hvTdUiV-GkFjKHRlKIQypRPXh6gdkm4,7614
3
- pyerualjetwork/activation_functions_cuda.py,sha256=pefklsl9QuSVbKwiUUHeF_ExN0bICH7QIF1MfoMU40Q,7665
4
- pyerualjetwork/data_operations.py,sha256=LKmLfl43zSCCuP2cWkBM-D6GtlhxXQggsNvZNUwHDe4,16347
5
- pyerualjetwork/data_operations_cuda.py,sha256=7p_v0yabHwq5Ft0jxWGEq1ZKyBFxOxvZvtPQjkcligk,18525
6
- pyerualjetwork/ene.py,sha256=Dnx96FmQHxCbeT0IcUOydG7R8lPTlzmU_xXU9P4VBPY,45117
7
- pyerualjetwork/ene_cuda.py,sha256=KgmpfgUH9KK5hDy6qqk3P9CX7N1dsFTTVIbFcASOLrM,45648
8
- pyerualjetwork/fitness_functions.py,sha256=urRdeMvUhNgWxD4ZGHCRdQlIf9cTWYMvF3_aVBojRqY,1235
9
- pyerualjetwork/help.py,sha256=F1xDDKqHGeUIXM-mo5c0Eav5XidCVNc62LvXqwS2Zbs,785
10
- pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
11
- pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
12
- pyerualjetwork/memory_operations.py,sha256=Ch2QydBGHR5Be6fZu59C8eF8z-C2c3HVDIH8fz07BZo,14258
13
- pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
14
- pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
15
- pyerualjetwork/model_operations.py,sha256=F5qYAU578yrS1cUCwsaPJnqgfEAEUD_50vspakypTGY,15971
16
- pyerualjetwork/model_operations_cuda.py,sha256=lgYAEGUERTMU7TEWRVKaa3yk_IOt4Jo9RJP9lDsNREU,17206
17
- pyerualjetwork/neu.py,sha256=bNl8nnL5R3WS8vNWxFbVzeX9eeGgownHdebbsKKNfvU,24948
18
- pyerualjetwork/neu_cuda.py,sha256=0hUCQ02tLFg1cGuqOxT3jfBx3W28hIL6nhEu4m2LeY8,25999
19
- pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
20
- pyerualjetwork/visualizations.py,sha256=4DpboCi1GnJjKRVQ0RdGyQyHagZQTLUbCgSI7UHzd6o,28212
21
- pyerualjetwork/visualizations_cuda.py,sha256=7lYrkOdrjwQGB3T4k_vI8UDxsm_TRjzaSSg9GhlNczs,28667
22
- pyerualjetwork-5b3.dist-info/METADATA,sha256=jxcttUe0NJiI48xfRmAl4Ck0ZrodlOenv4UvkoPAVDI,7503
23
- pyerualjetwork-5b3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
24
- pyerualjetwork-5b3.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
25
- pyerualjetwork-5b3.dist-info/RECORD,,