pyerualjetwork 5b2__py3-none-any.whl → 5b3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -38,7 +38,7 @@ PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_A
38
38
  - Contact: tchasancan@gmail.com
39
39
  """
40
40
 
41
- __version__ = "5b2"
41
+ __version__ = "5b3"
42
42
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
43
43
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
44
44
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
@@ -86,16 +86,16 @@ def draw_model_architecture(model_name, model_path=''):
86
86
  Visualizes the architecture of a neural network model with multiple inputs based on activation functions.
87
87
  """
88
88
 
89
- from .model_operations import load_model, get_scaler, get_act_pot, get_weights
89
+ from .model_operations import load_model, get_scaler, get_act, get_weights
90
90
 
91
91
  model = load_model(model_name=model_name, model_path=model_path)
92
92
 
93
93
  W = model[get_weights()]
94
- activation_potentiation = model[get_act_pot()]
94
+ activations = model[get_act()]
95
95
  scaler_params = model[get_scaler()]
96
96
 
97
97
  # Calculate dimensions based on number of activation functions
98
- num_activations = len(activation_potentiation)
98
+ num_activations = len(activations)
99
99
  input_groups = num_activations # Number of input groups equals number of activations
100
100
  num_inputs = W.shape[1]
101
101
 
@@ -138,7 +138,7 @@ def draw_model_architecture(model_name, model_path=''):
138
138
  for i in range(num_inputs):
139
139
  plt.plot(*pos[f'input_{group}_{i}'], 'o', color='lightgreen', markersize=20)
140
140
  plt.text(pos[f'input_{group}_{i}'][0] - 0.05, pos[f'input_{group}_{i}'][1],
141
- f'Input #{i+1} ({activation_potentiation[group]})', ha='right', va='center')
141
+ f'Input #{i+1} ({activations[group]})', ha='right', va='center')
142
142
 
143
143
  # Draw connections from input to summed input directly
144
144
  plt.plot([pos[f'input_{group}_{i}'][0], pos[f'summed_{i}'][0]],
@@ -325,7 +325,7 @@ def draw_activations(x_train, activation):
325
325
  return x_train
326
326
 
327
327
 
328
- def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation):
328
+ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activations):
329
329
 
330
330
  from .metrics import metrics, confusion_matrix, roc_curve
331
331
  from .ui import loading_bars, initialize_loading_bar
@@ -433,7 +433,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
433
433
 
434
434
  for i in range(len(grid_full)):
435
435
 
436
- Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W, activation_potentiation=activation_potentiation))
436
+ Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W, activations=activations))
437
437
  predict_progress.update(1)
438
438
 
439
439
  predict_progress.close()
@@ -453,7 +453,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
453
453
  plt.show()
454
454
 
455
455
 
456
- def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=None):
456
+ def plot_decision_boundary(x, y, activations, W, artist=None, ax=None):
457
457
 
458
458
  from .model_operations import predict_model_ram
459
459
  from .data_operations import decode_one_hot
@@ -473,7 +473,7 @@ def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=Non
473
473
  Z = [None] * len(grid_full)
474
474
 
475
475
  for i in range(len(grid_full)):
476
- Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W, activation_potentiation=activation_potentiation))
476
+ Z[i] = np.argmax(predict_model_ram(grid_full[i], W=W, activations=activations))
477
477
 
478
478
  Z = np.array(Z, dtype=np.int32)
479
479
  Z = Z.reshape(xx.shape)
@@ -667,9 +667,9 @@ def update_weight_visualization_for_fit(ax, LTPW, artist2):
667
667
  """
668
668
 
669
669
  """ DISABLED
670
- def update_decision_boundary_for_fit(ax, x_val, y_val, activation_potentiation, LTPW, artist1):
670
+ def update_decision_boundary_for_fit(ax, x_val, y_val, activations, LTPW, artist1):
671
671
 
672
- art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activation_potentiation, LTPW, artist=artist1, ax=ax)
672
+ art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activations, LTPW, artist=artist1, ax=ax)
673
673
  artist1.append([*art1_1.collections, art1_2])
674
674
  """
675
675
 
@@ -87,16 +87,16 @@ def draw_model_architecture(model_name, model_path=''):
87
87
  Visualizes the architecture of a neural network model with multiple inputs based on activation functions.
88
88
  """
89
89
 
90
- from .model_operations_cuda import load_model, get_scaler, get_act_pot, get_weights
90
+ from .model_operations_cuda import load_model, get_scaler, get_act, get_weights
91
91
 
92
92
  model = load_model(model_name=model_name, model_path=model_path)
93
93
 
94
94
  W = model[get_weights()]
95
- activation_potentiation = model[get_act_pot()]
95
+ activations = model[get_act()]
96
96
  scaler_params = model[get_scaler()]
97
97
 
98
98
  # Calculate dimensions based on number of activation functions
99
- num_activations = len(activation_potentiation)
99
+ num_activations = len(activations)
100
100
  input_groups = num_activations # Number of input groups equals number of activations
101
101
  num_inputs = W.shape[1]
102
102
 
@@ -139,7 +139,7 @@ def draw_model_architecture(model_name, model_path=''):
139
139
  for i in range(num_inputs):
140
140
  plt.plot(*pos[f'input_{group}_{i}'], 'o', color='lightgreen', markersize=20)
141
141
  plt.text(pos[f'input_{group}_{i}'][0] - 0.05, pos[f'input_{group}_{i}'][1],
142
- f'Input #{i+1} ({activation_potentiation[group]})', ha='right', va='center')
142
+ f'Input #{i+1} ({activations[group]})', ha='right', va='center')
143
143
 
144
144
  # Draw connections from input to summed input directly
145
145
  plt.plot([pos[f'input_{group}_{i}'][0], pos[f'summed_{i}'][0]],
@@ -326,7 +326,7 @@ def draw_activations(x_train, activation):
326
326
  return x_train
327
327
 
328
328
 
329
- def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation):
329
+ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activations):
330
330
 
331
331
  from .metrics_cuda import metrics, confusion_matrix, roc_curve
332
332
  from .ui import loading_bars, initialize_loading_bar
@@ -432,7 +432,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
432
432
 
433
433
  for i in range(len(grid_full)):
434
434
 
435
- Z[i] = cp.argmax(predict_model_ram(grid_full[i], W=W, activation_potentiation=activation_potentiation))
435
+ Z[i] = cp.argmax(predict_model_ram(grid_full[i], W=W, activations=activations))
436
436
  predict_progress.update(1)
437
437
 
438
438
  predict_progress.close()
@@ -449,7 +449,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
449
449
  plt.show()
450
450
 
451
451
 
452
- def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=None):
452
+ def plot_decision_boundary(x, y, activations, W, artist=None, ax=None):
453
453
 
454
454
  from .model_operations_cuda import predict_model_ram
455
455
  from .data_operations_cuda import decode_one_hot
@@ -469,7 +469,7 @@ def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=Non
469
469
  Z = [None] * len(grid_full)
470
470
 
471
471
  for i in range(len(grid_full)):
472
- Z[i] = cp.argmax(predict_model_ram(grid_full[i], W=W, activation_potentiation=activation_potentiation))
472
+ Z[i] = cp.argmax(predict_model_ram(grid_full[i], W=W, activations=activations))
473
473
 
474
474
  Z = cp.array(Z, dtype=cp.int32)
475
475
  Z = Z.reshape(xx.shape)
@@ -638,8 +638,8 @@ def update_neural_web_for_fit(W, ax, G, artist):
638
638
  """
639
639
 
640
640
  """ DISABLED
641
- def update_decision_boundary_for_fit(ax, x_val, y_val, activation_potentiation, LTPW, artist1):
642
- art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activation_potentiation, LTPW, artist=artist1, ax=ax)
641
+ def update_decision_boundary_for_fit(ax, x_val, y_val, activations, LTPW, artist1):
642
+ art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activations, LTPW, artist=artist1, ax=ax)
643
643
  artist1.append([*art1_1.collections, art1_2])
644
644
  """
645
645
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5b2
3
+ Version: 5b3
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=hfJ9eS6MWjT5xcxtk3mDcJhmsG-XwOa5e8rta5QqbIQ,2631
1
+ pyerualjetwork/__init__.py,sha256=oRByBl-TW3JDnYYencDENYU_PkCV_f8piVIkK641M4g,2631
2
2
  pyerualjetwork/activation_functions.py,sha256=X7Kv8qv8oZq8hvTdUiV-GkFjKHRlKIQypRPXh6gdkm4,7614
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=pefklsl9QuSVbKwiUUHeF_ExN0bICH7QIF1MfoMU40Q,7665
4
4
  pyerualjetwork/data_operations.py,sha256=LKmLfl43zSCCuP2cWkBM-D6GtlhxXQggsNvZNUwHDe4,16347
@@ -17,9 +17,9 @@ pyerualjetwork/model_operations_cuda.py,sha256=lgYAEGUERTMU7TEWRVKaa3yk_IOt4Jo9R
17
17
  pyerualjetwork/neu.py,sha256=bNl8nnL5R3WS8vNWxFbVzeX9eeGgownHdebbsKKNfvU,24948
18
18
  pyerualjetwork/neu_cuda.py,sha256=0hUCQ02tLFg1cGuqOxT3jfBx3W28hIL6nhEu4m2LeY8,25999
19
19
  pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
20
- pyerualjetwork/visualizations.py,sha256=utnX9zQhzmtvBJLOLNGm2jecVVk4zHXABQdjb0XzJac,28352
21
- pyerualjetwork/visualizations_cuda.py,sha256=gnoaaazZ-nc9E1ImqXrZBRgQ4Rnpi2qh2yGJ2eLKMlE,28807
22
- pyerualjetwork-5b2.dist-info/METADATA,sha256=eS1VixnfYt_TbVFoqu6HJVf0wHrGyc2Ups5Cr-D8Q_4,7503
23
- pyerualjetwork-5b2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
24
- pyerualjetwork-5b2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
25
- pyerualjetwork-5b2.dist-info/RECORD,,
20
+ pyerualjetwork/visualizations.py,sha256=4DpboCi1GnJjKRVQ0RdGyQyHagZQTLUbCgSI7UHzd6o,28212
21
+ pyerualjetwork/visualizations_cuda.py,sha256=7lYrkOdrjwQGB3T4k_vI8UDxsm_TRjzaSSg9GhlNczs,28667
22
+ pyerualjetwork-5b3.dist-info/METADATA,sha256=jxcttUe0NJiI48xfRmAl4Ck0ZrodlOenv4UvkoPAVDI,7503
23
+ pyerualjetwork-5b3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
24
+ pyerualjetwork-5b3.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
25
+ pyerualjetwork-5b3.dist-info/RECORD,,