pyerualjetwork 5.56__py3-none-any.whl → 5.57a0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
42
42
  - Contact: tchasancan@gmail.com
43
43
  """
44
44
 
45
- __version__ = "5.56"
45
+ __version__ = "5.57a0"
46
46
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
47
47
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
48
48
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
pyerualjetwork/nn.py CHANGED
@@ -309,7 +309,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
309
309
  loss_list = []
310
310
  target_pop = []
311
311
 
312
- progress = initialize_loading_bar(total=pop_size, desc="", ncols=85, bar_format=bar_format_learner)
312
+ progress = initialize_loading_bar(total=gen if isinstance(gen) == int else gen[0] + gen[1], desc="", ncols=85, bar_format=bar_format_learner)
313
313
 
314
314
  if fit_start is False:
315
315
  weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), neurons=neurons, activation_functions=activations, population_size=pop_size, dtype=dtype)
@@ -362,10 +362,6 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
362
362
  postfix_dict["Gen"] = str(i+1) + '/' + str(gen)
363
363
  progress.set_postfix(postfix_dict)
364
364
 
365
- progress.n = 0
366
- progress.last_print_n = 0
367
- progress.update(0)
368
-
369
365
  if parallel_training:
370
366
 
371
367
  eval_params = []
@@ -445,8 +441,6 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
445
441
  if show_current_activations:
446
442
  print(f", Current Activations={final_activations}", end='')
447
443
 
448
- progress.update(1)
449
-
450
444
  else:
451
445
 
452
446
  for j in range(pop_size):
@@ -574,7 +568,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
574
568
  return model
575
569
 
576
570
 
577
- progress.update(1)
571
+ progress.update(1)
578
572
 
579
573
  # Update visualizations during training
580
574
  if show_history:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5.56
3
+ Version: 5.57a0
4
4
  Summary: PyereualJetwork is a GPU-accelerated + Parallel Threading Supported machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,11 +1,11 @@
1
- pyerualjetwork/__init__.py,sha256=LuxoTYRSJiYI1GpRQEdSOEM1hSr-naSreprisl2w_WY,3087
1
+ pyerualjetwork/__init__.py,sha256=Is2WYk7i-Z0QINy6UNTDQd5RZLX_fj7wgkbphaZlrfc,3089
2
2
  pyerualjetwork/ene.py,sha256=luTvspHRTose6s3uRas40pNXyKoxU9siaHiMBNI5yoc,42136
3
3
  pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
4
4
  pyerualjetwork/help.py,sha256=sn9jBzXkQsTZvdgsUXUpSs_BbYYIgY3whofg6dj8peI,848
5
5
  pyerualjetwork/issue_solver.py,sha256=uay_9XK6xWnLmK2P_BeyDQlyNXzg_zYffnXYd228wZk,4102
6
6
  pyerualjetwork/memory_ops.py,sha256=TUFh9SYWCKL6N-vNdWId_EwU313TuZomQCHOrltrD-4,14280
7
7
  pyerualjetwork/model_ops.py,sha256=WaP1XwKqXMfZl4Yop8a1Bg0xtmLYgap9JFOWHaLr7S4,25143
8
- pyerualjetwork/nn.py,sha256=foqU0gd60XGyp6vE7ZXMaUwfOTaHvuCmsV7iumL_t2I,41493
8
+ pyerualjetwork/nn.py,sha256=y62ton0CZGxSgPavWt8tb4XEfQ6bVBUubKw5NE7To_s,41404
9
9
  pyerualjetwork/old_cpu_model_ops.py,sha256=1KNgjUeYCO_TsA5RtbNiuIiBJzq8-rL2dE6jxKqCBU0,21481
10
10
  pyerualjetwork/old_cuda_model_ops.py,sha256=KAscAd8e_I8Vqdd9BJaHd6-IG6fhxFglAFxys0sqmEo,23079
11
11
  pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
@@ -21,7 +21,7 @@ pyerualjetwork/cuda/data_ops.py,sha256=BEXh4M7BWXaTpYlVS9D2i3CGgOmL5131vy7FZyuTQ
21
21
  pyerualjetwork/cuda/loss_functions.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
22
22
  pyerualjetwork/cuda/metrics.py,sha256=PjDBoRvr6va8vRvDIJJGBO4-I4uumrk3NCM1Vz4NJTo,5054
23
23
  pyerualjetwork/cuda/visualizations.py,sha256=2mHE7iqqsN3K6xtCnemS4o_YWGS0bIV2IxF4cG6Ur9k,20090
24
- pyerualjetwork-5.56.dist-info/METADATA,sha256=fxhkFzBujrcD1yUIG5lxIYrTMC7n3zqWFCrsCdlcnA0,8050
25
- pyerualjetwork-5.56.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
26
- pyerualjetwork-5.56.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
27
- pyerualjetwork-5.56.dist-info/RECORD,,
24
+ pyerualjetwork-5.57a0.dist-info/METADATA,sha256=ZUZ3suCf0uBfmT2UuRw3xw1M2WVfJNAUZ95TypCNOQM,8052
25
+ pyerualjetwork-5.57a0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
26
+ pyerualjetwork-5.57a0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
27
+ pyerualjetwork-5.57a0.dist-info/RECORD,,