pyerualjetwork 5.55__py3-none-any.whl → 5.57a0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
42
42
  - Contact: tchasancan@gmail.com
43
43
  """
44
44
 
45
- __version__ = "5.55"
45
+ __version__ = "5.57a0"
46
46
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
47
47
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
48
48
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
pyerualjetwork/nn.py CHANGED
@@ -143,13 +143,13 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
143
143
  Examples:
144
144
 
145
145
  This creates a PLAN model:
146
- - ```model = learn(x_train, y_train, optimizer, template_model, pop_size=100, gen=100, fit_start=True) ```
146
+ - ```model = learn(x_train, y_train, optimizer, pop_size=100, gen=100, fit_start=True) ```
147
147
 
148
148
  This creates a MLP model(with 2 hidden layer):
149
- - ```model = learn(x_train, y_train, optimizer, template_model, pop_size=100, gen=100, fit_start=False, neurons=[64, 64], activation_functions=['tanh', 'tanh']) ```
149
+ - ```model = learn(x_train, y_train, optimizer, pop_size=100, gen=100, fit_start=False, neurons=[64, 64], activation_functions=['tanh', 'tanh']) ```
150
150
 
151
151
  This creates a PTNN model(with 2 hidden layer & 1 aggregation layer(comes with PLAN)):
152
- - ```model = learn(x_train, y_train, optimizer, template_model, pop_size=100, gen=[10, 100], fit_start=True, neurons=[64, 64], activation_functions=['tanh', 'tanh']) ```
152
+ - ```model = learn(x_train, y_train, optimizer, pop_size=100, gen=[10, 100], fit_start=True, neurons=[64, 64], activation_functions=['tanh', 'tanh']) ```
153
153
 
154
154
  :Args:
155
155
  :param x_train: (array-like): Training input data.
@@ -194,7 +194,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
194
194
  :param decision_boundary_history: (bool, optional): At the end of the training, the decision boundary history is shown in animation form. Note: If you are sure of your memory, set it to True. Default: False
195
195
  :param activation_functions: (list[str], optional): If you dont want train PLAN model this parameter represents activation function of each hidden layer for MLP or PTNN. if neurons is not [] --> uses default: ['linear'] * len(neurons). if neurons is [] --> uses [].
196
196
  :param dtype: (numpy.dtype): Data type for the Weight matrices. np.float32 by default. Example: np.float64 or np.float16.
197
- :param parallel_training: (bool, optional): Parallel training process ? Default = False.
197
+ :param parallel_training: (bool, optional): Parallel training process ? Default = False. For example code: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/ExampleCodes/iris_multi_thread(mlp).py
198
198
  - Recommended for large populations (pop_size) to significantly speed up training.
199
199
  :param thread_count: (int, optional): If parallel_training is True you can give max thread number for parallel training. Default: (automaticly selects maximum thread count of your system).
200
200
  :param cuda: (bool, optional): CUDA GPU acceleration ? Default = False.
@@ -309,7 +309,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
309
309
  loss_list = []
310
310
  target_pop = []
311
311
 
312
- progress = initialize_loading_bar(total=pop_size, desc="", ncols=85, bar_format=bar_format_learner)
312
+ progress = initialize_loading_bar(total=gen if isinstance(gen) == int else gen[0] + gen[1], desc="", ncols=85, bar_format=bar_format_learner)
313
313
 
314
314
  if fit_start is False:
315
315
  weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), neurons=neurons, activation_functions=activations, population_size=pop_size, dtype=dtype)
@@ -362,10 +362,6 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
362
362
  postfix_dict["Gen"] = str(i+1) + '/' + str(gen)
363
363
  progress.set_postfix(postfix_dict)
364
364
 
365
- progress.n = 0
366
- progress.last_print_n = 0
367
- progress.update(0)
368
-
369
365
  if parallel_training:
370
366
 
371
367
  eval_params = []
@@ -445,8 +441,6 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
445
441
  if show_current_activations:
446
442
  print(f", Current Activations={final_activations}", end='')
447
443
 
448
- progress.update(1)
449
-
450
444
  else:
451
445
 
452
446
  for j in range(pop_size):
@@ -574,7 +568,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
574
568
  return model
575
569
 
576
570
 
577
- progress.update(1)
571
+ progress.update(1)
578
572
 
579
573
  # Update visualizations during training
580
574
  if show_history:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5.55
3
+ Version: 5.57a0
4
4
  Summary: PyereualJetwork is a GPU-accelerated + Parallel Threading Supported machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,11 +1,11 @@
1
- pyerualjetwork/__init__.py,sha256=j2PJ8ap2XNId9eE4qknm8J4A7HrmCfw_r499HGMYSI4,3087
1
+ pyerualjetwork/__init__.py,sha256=Is2WYk7i-Z0QINy6UNTDQd5RZLX_fj7wgkbphaZlrfc,3089
2
2
  pyerualjetwork/ene.py,sha256=luTvspHRTose6s3uRas40pNXyKoxU9siaHiMBNI5yoc,42136
3
3
  pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
4
4
  pyerualjetwork/help.py,sha256=sn9jBzXkQsTZvdgsUXUpSs_BbYYIgY3whofg6dj8peI,848
5
5
  pyerualjetwork/issue_solver.py,sha256=uay_9XK6xWnLmK2P_BeyDQlyNXzg_zYffnXYd228wZk,4102
6
6
  pyerualjetwork/memory_ops.py,sha256=TUFh9SYWCKL6N-vNdWId_EwU313TuZomQCHOrltrD-4,14280
7
7
  pyerualjetwork/model_ops.py,sha256=WaP1XwKqXMfZl4Yop8a1Bg0xtmLYgap9JFOWHaLr7S4,25143
8
- pyerualjetwork/nn.py,sha256=nA26datlq7QMPm9BgpneivLlV2xHKzAMK4toYZeBChA,41409
8
+ pyerualjetwork/nn.py,sha256=y62ton0CZGxSgPavWt8tb4XEfQ6bVBUubKw5NE7To_s,41404
9
9
  pyerualjetwork/old_cpu_model_ops.py,sha256=1KNgjUeYCO_TsA5RtbNiuIiBJzq8-rL2dE6jxKqCBU0,21481
10
10
  pyerualjetwork/old_cuda_model_ops.py,sha256=KAscAd8e_I8Vqdd9BJaHd6-IG6fhxFglAFxys0sqmEo,23079
11
11
  pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
@@ -21,7 +21,7 @@ pyerualjetwork/cuda/data_ops.py,sha256=BEXh4M7BWXaTpYlVS9D2i3CGgOmL5131vy7FZyuTQ
21
21
  pyerualjetwork/cuda/loss_functions.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
22
22
  pyerualjetwork/cuda/metrics.py,sha256=PjDBoRvr6va8vRvDIJJGBO4-I4uumrk3NCM1Vz4NJTo,5054
23
23
  pyerualjetwork/cuda/visualizations.py,sha256=2mHE7iqqsN3K6xtCnemS4o_YWGS0bIV2IxF4cG6Ur9k,20090
24
- pyerualjetwork-5.55.dist-info/METADATA,sha256=Y_ya6IN7QEh2EAPa34LalZccl-Gsiesh2JK-p3V28WE,8050
25
- pyerualjetwork-5.55.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
26
- pyerualjetwork-5.55.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
27
- pyerualjetwork-5.55.dist-info/RECORD,,
24
+ pyerualjetwork-5.57a0.dist-info/METADATA,sha256=ZUZ3suCf0uBfmT2UuRw3xw1M2WVfJNAUZ95TypCNOQM,8052
25
+ pyerualjetwork-5.57a0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
26
+ pyerualjetwork-5.57a0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
27
+ pyerualjetwork-5.57a0.dist-info/RECORD,,