pyerualjetwork 5.49__py3-none-any.whl → 5.50.dev0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
42
42
  - Contact: tchasancan@gmail.com
43
43
  """
44
44
 
45
- __version__ = "5.49"
45
+ __version__ = "5.50dev0"
46
46
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
47
47
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
48
48
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
@@ -500,12 +500,9 @@ def predict_from_storage(Input, model_name, cuda=False, model_path=''):
500
500
 
501
501
  if model_type == 'MLP':
502
502
 
503
- layer = Input
504
- for i in range(len(W)):
505
- if i == 0:
506
- layer = layer @ cp.array(W[i]).T if cuda else layer @ W[i].T
507
- else:
508
- layer = apply_activation(layer, activations[i])
503
+ layer = Input @ cp.array(W[0]).T if cuda else Input @ W[0].T
504
+ for i in range(1, len(W)):
505
+ layer = apply_activation(layer, activations[i-1])
509
506
  layer = layer @ cp.array(W[i]).T if cuda else layer @ W[i].T
510
507
 
511
508
  result = layer
@@ -526,7 +523,7 @@ def predict_from_storage(Input, model_name, cuda=False, model_path=''):
526
523
  layer = Input @ cp.array(W[0]).T if cuda else Input @ W[0].T
527
524
 
528
525
  for i in range(1, len(W)):
529
- layer = apply_activation(layer, activations[i])
526
+ layer = apply_activation(layer, activations[i-1])
530
527
  layer = layer @ cp.array(W[i]).T if cuda else layer @ W[i].T
531
528
 
532
529
  result = layer
@@ -617,12 +614,12 @@ def predict_from_memory(Input, model, cuda=False):
617
614
  activations = [item if isinstance(item, list) or isinstance(item, str) else [item] for item in activations]
618
615
 
619
616
  if model_type == 'MLP':
620
- layer = Input
621
- for i in range(len(W)):
622
- if i == 0:
623
- layer = layer @ cp.array(W[i]).T if cuda else layer @ W[i].T
624
- else:
625
- layer = apply_activation(layer, activations[i])
617
+
618
+ layer = Input @ cp.array(W[0]).T if cuda else Input @ W[0].T
619
+ for i in range(1, len(W)):
620
+ print(activations[i-1])
621
+ input()
622
+ layer = apply_activation(layer, activations[i-1])
626
623
  layer = layer @ cp.array(W[i]).T if cuda else layer @ W[i].T
627
624
 
628
625
  result = layer
@@ -643,7 +640,7 @@ def predict_from_memory(Input, model, cuda=False):
643
640
  layer = Input @ cp.array(W[0]).T if cuda else Input @ W[0].T
644
641
 
645
642
  for i in range(1, len(W)):
646
- layer = apply_activation(layer, activations[i])
643
+ layer = apply_activation(layer, activations[i-1])
647
644
  layer = layer @ cp.array(W[i]).T if cuda else layer @ W[i].T
648
645
 
649
646
  result = layer
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5.49
3
+ Version: 5.50.dev0
4
4
  Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,10 +1,10 @@
1
- pyerualjetwork/__init__.py,sha256=mFxYGSQWvUNRiGLa2dCpWcHMskjuUbPZcpgjMKxMq4A,3020
1
+ pyerualjetwork/__init__.py,sha256=Y_qdG3TL_xRN5XwJ0TgYXOwQveQy9PtfSnY8prmceFM,3024
2
2
  pyerualjetwork/ene.py,sha256=luTvspHRTose6s3uRas40pNXyKoxU9siaHiMBNI5yoc,42136
3
3
  pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
4
4
  pyerualjetwork/help.py,sha256=sn9jBzXkQsTZvdgsUXUpSs_BbYYIgY3whofg6dj8peI,848
5
5
  pyerualjetwork/issue_solver.py,sha256=uay_9XK6xWnLmK2P_BeyDQlyNXzg_zYffnXYd228wZk,4102
6
6
  pyerualjetwork/memory_ops.py,sha256=TUFh9SYWCKL6N-vNdWId_EwU313TuZomQCHOrltrD-4,14280
7
- pyerualjetwork/model_ops.py,sha256=reky09eiECdhuiaWQwz4iMtIxPxKHBNPETGYlNGe2U8,25287
7
+ pyerualjetwork/model_ops.py,sha256=44apKiu5yPxzIbQhCMlcq_2ju2m37Z30iXHErOteJI0,25217
8
8
  pyerualjetwork/nn.py,sha256=t1Jf99F6PqfEfCH6erPcwN6q-tF3DPYgHUlQ7OMtnv8,36656
9
9
  pyerualjetwork/old_cpu_model_ops.py,sha256=1KNgjUeYCO_TsA5RtbNiuIiBJzq8-rL2dE6jxKqCBU0,21481
10
10
  pyerualjetwork/old_cuda_model_ops.py,sha256=KAscAd8e_I8Vqdd9BJaHd6-IG6fhxFglAFxys0sqmEo,23079
@@ -21,7 +21,7 @@ pyerualjetwork/cuda/data_ops.py,sha256=BEXh4M7BWXaTpYlVS9D2i3CGgOmL5131vy7FZyuTQ
21
21
  pyerualjetwork/cuda/loss_functions.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
22
22
  pyerualjetwork/cuda/metrics.py,sha256=PjDBoRvr6va8vRvDIJJGBO4-I4uumrk3NCM1Vz4NJTo,5054
23
23
  pyerualjetwork/cuda/visualizations.py,sha256=2mHE7iqqsN3K6xtCnemS4o_YWGS0bIV2IxF4cG6Ur9k,20090
24
- pyerualjetwork-5.49.dist-info/METADATA,sha256=j27spk_SvvDITw89XDgCCPX3oc5SWyaGhDXdMJ4IsNA,7988
25
- pyerualjetwork-5.49.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
26
- pyerualjetwork-5.49.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
27
- pyerualjetwork-5.49.dist-info/RECORD,,
24
+ pyerualjetwork-5.50.dev0.dist-info/METADATA,sha256=3BB3HGslclB4BoW6w_H7wwqj-bh2X-z9RhGYzTLmoJM,7993
25
+ pyerualjetwork-5.50.dev0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
26
+ pyerualjetwork-5.50.dev0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
27
+ pyerualjetwork-5.50.dev0.dist-info/RECORD,,