pyerualjetwork 5.45b0__py3-none-any.whl → 5.47__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/cpu/visualizations.py +1 -3
- pyerualjetwork/nn.py +9 -10
- {pyerualjetwork-5.45b0.dist-info → pyerualjetwork-5.47.dist-info}/METADATA +1 -1
- {pyerualjetwork-5.45b0.dist-info → pyerualjetwork-5.47.dist-info}/RECORD +7 -7
- {pyerualjetwork-5.45b0.dist-info → pyerualjetwork-5.47.dist-info}/WHEEL +0 -0
- {pyerualjetwork-5.45b0.dist-info → pyerualjetwork-5.47.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
|
|
42
42
|
- Contact: tchasancan@gmail.com
|
43
43
|
"""
|
44
44
|
|
45
|
-
__version__ = "5.
|
45
|
+
__version__ = "5.47"
|
46
46
|
__update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
|
47
47
|
* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
|
48
48
|
* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
@@ -275,7 +275,7 @@ def draw_activations(x_train, activation):
|
|
275
275
|
return x_train
|
276
276
|
|
277
277
|
|
278
|
-
def plot_evaluate(x_test, y_test, y_preds, model, cuda=False):
|
278
|
+
def plot_evaluate(x_test, y_test, y_preds, model, acc, cuda=False):
|
279
279
|
|
280
280
|
if not cuda:
|
281
281
|
from .metrics import metrics, confusion_matrix, roc_curve
|
@@ -287,8 +287,6 @@ def plot_evaluate(x_test, y_test, y_preds, model, cuda=False):
|
|
287
287
|
|
288
288
|
from ..model_ops import predict_from_memory
|
289
289
|
|
290
|
-
acc = model.accuracy
|
291
|
-
|
292
290
|
y_true = decode_one_hot(y_test)
|
293
291
|
y_preds = decode_one_hot(y_preds)
|
294
292
|
|
pyerualjetwork/nn.py
CHANGED
@@ -95,14 +95,13 @@ def plan_fit(
|
|
95
95
|
Returns:
|
96
96
|
numpyarray: (Weight matrix).
|
97
97
|
"""
|
98
|
-
|
98
|
+
|
99
|
+
from .cpu.data_ops import normalization
|
99
100
|
if not cuda:
|
100
|
-
from
|
101
|
-
from .cpu.activation_functions import apply_activation
|
101
|
+
from cpu.activation_functions import apply_activation
|
102
102
|
array_type = np
|
103
103
|
|
104
104
|
else:
|
105
|
-
from .cuda.data_ops import normalization
|
106
105
|
from .cuda.activation_functions import apply_activation
|
107
106
|
array_type = cp
|
108
107
|
|
@@ -119,7 +118,7 @@ def plan_fit(
|
|
119
118
|
|
120
119
|
weight += y_train.T @ x_train if not cuda else cp.array(y_train).T @ cp.array(x_train)
|
121
120
|
|
122
|
-
return normalization(weight,
|
121
|
+
return normalization(weight.get() if cuda else weight,dtype=dtype)
|
123
122
|
|
124
123
|
|
125
124
|
def learn(x_train, y_train, optimizer, template_model, gen, pop_size, fit_start=True, batch_size=1,
|
@@ -314,7 +313,7 @@ def learn(x_train, y_train, optimizer, template_model, gen, pop_size, fit_start=
|
|
314
313
|
# TRANSFORMATION PLAN TO MLP FOR PTNN (in later generations)
|
315
314
|
if model_type == 'PLAN' and transfer_learning:
|
316
315
|
if i == gen_copy[0]:
|
317
|
-
|
316
|
+
|
318
317
|
model_type = 'PTNN'
|
319
318
|
neurons = neurons_copy
|
320
319
|
|
@@ -608,9 +607,9 @@ def learn(x_train, y_train, optimizer, template_model, gen, pop_size, fit_start=
|
|
608
607
|
def evaluate(
|
609
608
|
x_test,
|
610
609
|
y_test,
|
610
|
+
model=None,
|
611
611
|
model_type=None,
|
612
612
|
W=None,
|
613
|
-
model=None,
|
614
613
|
activations=['linear'],
|
615
614
|
activation_potentiations=[],
|
616
615
|
auto_normalization=False,
|
@@ -625,11 +624,11 @@ def evaluate(
|
|
625
624
|
|
626
625
|
y_test (np.ndarray): Test labels (one-hot encoded).
|
627
626
|
|
627
|
+
model (tuple, optional): Trained model.
|
628
|
+
|
628
629
|
model_type: (str, optional): Type of the model. Options: 'PLAN', 'MLP', 'PTNN'.
|
629
630
|
|
630
631
|
W (array-like, optional): Neural net weight matrix.
|
631
|
-
|
632
|
-
model (tuple, optional): Trained model.
|
633
632
|
|
634
633
|
activations (list, optional): Activation list for PLAN or MLP models (MLP layers activations if it PTNN model). Default = ['linear'].
|
635
634
|
|
@@ -684,6 +683,6 @@ def evaluate(
|
|
684
683
|
softmax_preds = array_type.exp(result - max_vals) / array_type.sum(array_type.exp(result - max_vals), axis=1, keepdims=True)
|
685
684
|
accuracy = (array_type.argmax(softmax_preds, axis=1) == array_type.argmax(y_test, axis=1)).mean()
|
686
685
|
|
687
|
-
if show_report: plot_evaluate(x_test, y_test, result, model=model, cuda=cuda)
|
686
|
+
if show_report: plot_evaluate(x_test, y_test, result, acc=accuracy, model=model, cuda=cuda)
|
688
687
|
|
689
688
|
return W, result, accuracy, None, None, softmax_preds
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 5.
|
3
|
+
Version: 5.47
|
4
4
|
Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,11 +1,11 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=QUa5yI_HBHXe3fDWR7rT8k2BjlFxgwT_qFEwGPBYzzk,3020
|
2
2
|
pyerualjetwork/ene.py,sha256=8g2XEPRm3NLqSaN7xihIj1xXdIjSrl8Q69zqWTIXPI4,42142
|
3
3
|
pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
|
4
4
|
pyerualjetwork/help.py,sha256=sn9jBzXkQsTZvdgsUXUpSs_BbYYIgY3whofg6dj8peI,848
|
5
5
|
pyerualjetwork/issue_solver.py,sha256=uay_9XK6xWnLmK2P_BeyDQlyNXzg_zYffnXYd228wZk,4102
|
6
6
|
pyerualjetwork/memory_ops.py,sha256=TUFh9SYWCKL6N-vNdWId_EwU313TuZomQCHOrltrD-4,14280
|
7
7
|
pyerualjetwork/model_ops.py,sha256=39eUKrj0VKYiEYWKcq1U8O0TV_QMrxkuy8IhCHQsEcw,25101
|
8
|
-
pyerualjetwork/nn.py,sha256=
|
8
|
+
pyerualjetwork/nn.py,sha256=tSbzFk1MPb0ojwNiOUqM5JO56hiarB7eyKn3xqAibAA,36652
|
9
9
|
pyerualjetwork/old_cpu_model_ops.py,sha256=1KNgjUeYCO_TsA5RtbNiuIiBJzq8-rL2dE6jxKqCBU0,21481
|
10
10
|
pyerualjetwork/old_cuda_model_ops.py,sha256=KAscAd8e_I8Vqdd9BJaHd6-IG6fhxFglAFxys0sqmEo,23079
|
11
11
|
pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
@@ -14,14 +14,14 @@ pyerualjetwork/cpu/activation_functions.py,sha256=zZSoOQ452Ykp_RsHVxklxesJmmFguf
|
|
14
14
|
pyerualjetwork/cpu/data_ops.py,sha256=SPsIcjU0JPHfsnEmGjD8q-yTlpgYk-KPOPJ44dfp-nU,16143
|
15
15
|
pyerualjetwork/cpu/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
16
16
|
pyerualjetwork/cpu/metrics.py,sha256=NF8FARAqtuGlf4omVkQT4pOQZy7uePqzuHZGX9Y_Pn4,6076
|
17
|
-
pyerualjetwork/cpu/visualizations.py,sha256=
|
17
|
+
pyerualjetwork/cpu/visualizations.py,sha256=RcEZXX-U3BStOna1-C_a7z2VpXHuLAigeg1pD4u8I9I,26923
|
18
18
|
pyerualjetwork/cuda/__init__.py,sha256=Kja6OmNaJ0giOhRNYw9hgGkh5N4F1EUS2v94E_rmp2k,839
|
19
19
|
pyerualjetwork/cuda/activation_functions.py,sha256=Gj-qalU0GoAWoZzbFFHsD-R0c0KzHwOK1wwUQneBE44,6872
|
20
20
|
pyerualjetwork/cuda/data_ops.py,sha256=k7NX-ckZ6-NwvioigACUHrekG7L5lO4bzTtQbBwH1Fc,18508
|
21
21
|
pyerualjetwork/cuda/loss_functions.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
22
22
|
pyerualjetwork/cuda/metrics.py,sha256=PjDBoRvr6va8vRvDIJJGBO4-I4uumrk3NCM1Vz4NJTo,5054
|
23
23
|
pyerualjetwork/cuda/visualizations.py,sha256=2mHE7iqqsN3K6xtCnemS4o_YWGS0bIV2IxF4cG6Ur9k,20090
|
24
|
-
pyerualjetwork-5.
|
25
|
-
pyerualjetwork-5.
|
26
|
-
pyerualjetwork-5.
|
27
|
-
pyerualjetwork-5.
|
24
|
+
pyerualjetwork-5.47.dist-info/METADATA,sha256=xLHthdh9VXUGHS5O7AJBqI6-SI9UYonCdq_deuiOiOs,7988
|
25
|
+
pyerualjetwork-5.47.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
26
|
+
pyerualjetwork-5.47.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
27
|
+
pyerualjetwork-5.47.dist-info/RECORD,,
|
File without changes
|
File without changes
|