pyerualjetwork 5.45__py3-none-any.whl → 5.46__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
42
42
  - Contact: tchasancan@gmail.com
43
43
  """
44
44
 
45
- __version__ = "5.45"
45
+ __version__ = "5.46"
46
46
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
47
47
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
48
48
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
pyerualjetwork/nn.py CHANGED
@@ -102,8 +102,8 @@ def plan_fit(
102
102
  array_type = np
103
103
 
104
104
  else:
105
- from cuda.data_ops import normalization
106
- from cuda.activation_functions import apply_activation
105
+ from .cuda.data_ops import normalization
106
+ from .cuda.activation_functions import apply_activation
107
107
  array_type = cp
108
108
 
109
109
 
@@ -608,9 +608,9 @@ def learn(x_train, y_train, optimizer, template_model, gen, pop_size, fit_start=
608
608
  def evaluate(
609
609
  x_test,
610
610
  y_test,
611
+ model=None,
611
612
  model_type=None,
612
613
  W=None,
613
- model=None,
614
614
  activations=['linear'],
615
615
  activation_potentiations=[],
616
616
  auto_normalization=False,
@@ -625,11 +625,11 @@ def evaluate(
625
625
 
626
626
  y_test (np.ndarray): Test labels (one-hot encoded).
627
627
 
628
+ model (tuple, optional): Trained model.
629
+
628
630
  model_type: (str, optional): Type of the model. Options: 'PLAN', 'MLP', 'PTNN'.
629
631
 
630
632
  W (array-like, optional): Neural net weight matrix.
631
-
632
- model (tuple, optional): Trained model.
633
633
 
634
634
  activations (list, optional): Activation list for PLAN or MLP models (MLP layers activations if it PTNN model). Default = ['linear'].
635
635
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5.45
3
+ Version: 5.46
4
4
  Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,11 +1,11 @@
1
- pyerualjetwork/__init__.py,sha256=QC-wvvhjE3BKQ8HstP1Jpnc-u9VClYF265VuAiH08yg,3020
1
+ pyerualjetwork/__init__.py,sha256=P8GM6fJfypi_J037nG4WOLXE8MOyJQbP1Pr7uwJHYGk,3020
2
2
  pyerualjetwork/ene.py,sha256=8g2XEPRm3NLqSaN7xihIj1xXdIjSrl8Q69zqWTIXPI4,42142
3
3
  pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
4
4
  pyerualjetwork/help.py,sha256=sn9jBzXkQsTZvdgsUXUpSs_BbYYIgY3whofg6dj8peI,848
5
5
  pyerualjetwork/issue_solver.py,sha256=uay_9XK6xWnLmK2P_BeyDQlyNXzg_zYffnXYd228wZk,4102
6
6
  pyerualjetwork/memory_ops.py,sha256=TUFh9SYWCKL6N-vNdWId_EwU313TuZomQCHOrltrD-4,14280
7
7
  pyerualjetwork/model_ops.py,sha256=39eUKrj0VKYiEYWKcq1U8O0TV_QMrxkuy8IhCHQsEcw,25101
8
- pyerualjetwork/nn.py,sha256=68by_dONoNWcD2KXiDOMIDAkQbISoT6w2IdhgdWf1QM,36654
8
+ pyerualjetwork/nn.py,sha256=VQujtcJGKzUlJuBaB7JKbExyZ58l_RQKNlE5Re3nUio,36648
9
9
  pyerualjetwork/old_cpu_model_ops.py,sha256=1KNgjUeYCO_TsA5RtbNiuIiBJzq8-rL2dE6jxKqCBU0,21481
10
10
  pyerualjetwork/old_cuda_model_ops.py,sha256=KAscAd8e_I8Vqdd9BJaHd6-IG6fhxFglAFxys0sqmEo,23079
11
11
  pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
@@ -21,7 +21,7 @@ pyerualjetwork/cuda/data_ops.py,sha256=k7NX-ckZ6-NwvioigACUHrekG7L5lO4bzTtQbBwH1
21
21
  pyerualjetwork/cuda/loss_functions.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
22
22
  pyerualjetwork/cuda/metrics.py,sha256=PjDBoRvr6va8vRvDIJJGBO4-I4uumrk3NCM1Vz4NJTo,5054
23
23
  pyerualjetwork/cuda/visualizations.py,sha256=2mHE7iqqsN3K6xtCnemS4o_YWGS0bIV2IxF4cG6Ur9k,20090
24
- pyerualjetwork-5.45.dist-info/METADATA,sha256=hOTyqUTiWh65niS5fw1ni2bDsULlNdpGocrWiRNKKQo,7988
25
- pyerualjetwork-5.45.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
26
- pyerualjetwork-5.45.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
27
- pyerualjetwork-5.45.dist-info/RECORD,,
24
+ pyerualjetwork-5.46.dist-info/METADATA,sha256=kN-gLUu46x_2CLkeVbUmN2JqLpWE25PvQOPU5-gfq-8,7988
25
+ pyerualjetwork-5.46.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
26
+ pyerualjetwork-5.46.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
27
+ pyerualjetwork-5.46.dist-info/RECORD,,