pyerualjetwork 5.40a5__py3-none-any.whl → 5.41__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/cpu/visualizations.py +6 -15
- pyerualjetwork/issue_solver.py +1 -1
- pyerualjetwork/model_ops.py +3 -1
- pyerualjetwork/nn.py +37 -70
- {pyerualjetwork-5.40a5.dist-info → pyerualjetwork-5.41.dist-info}/METADATA +1 -1
- {pyerualjetwork-5.40a5.dist-info → pyerualjetwork-5.41.dist-info}/RECORD +9 -9
- {pyerualjetwork-5.40a5.dist-info → pyerualjetwork-5.41.dist-info}/WHEEL +0 -0
- {pyerualjetwork-5.40a5.dist-info → pyerualjetwork-5.41.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
|
|
42
42
|
- Contact: tchasancan@gmail.com
|
43
43
|
"""
|
44
44
|
|
45
|
-
__version__ = "5.
|
45
|
+
__version__ = "5.41"
|
46
46
|
__update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
|
47
47
|
* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
|
48
48
|
* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
@@ -418,20 +418,11 @@ def plot_decision_boundary(x, y, ax, activations, W, artist, model_type, activat
|
|
418
418
|
feature_indices = [0, 1]
|
419
419
|
|
420
420
|
template_model = get_model_template()
|
421
|
-
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
activations,
|
427
|
-
None,
|
428
|
-
None,
|
429
|
-
model_type,
|
430
|
-
None,
|
431
|
-
None,
|
432
|
-
None,
|
433
|
-
None,
|
434
|
-
activation_potentiation)
|
421
|
+
|
422
|
+
model = template_model._replace(weights=W,
|
423
|
+
activations=activations,
|
424
|
+
model_type=model_type,
|
425
|
+
activation_potentiation=activation_potentiation)
|
435
426
|
h = .02
|
436
427
|
array_type = np if not cuda else cp
|
437
428
|
x_min, x_max = x[:, feature_indices[0]].min() - 1, x[:, feature_indices[0]].max() + 1
|
@@ -443,7 +434,7 @@ def plot_decision_boundary(x, y, ax, activations, W, artist, model_type, activat
|
|
443
434
|
grid_full = array_type.zeros((grid.shape[0], x.shape[1]), dtype=array_type.float32)
|
444
435
|
grid_full[:, feature_indices] = grid
|
445
436
|
|
446
|
-
Z = array_type.argmax(predict_from_memory(grid_full, model=
|
437
|
+
Z = array_type.argmax(predict_from_memory(grid_full, model=model, cuda=cuda), axis=1)
|
447
438
|
|
448
439
|
Z = Z.reshape(xx.shape)
|
449
440
|
|
pyerualjetwork/issue_solver.py
CHANGED
@@ -9,7 +9,7 @@ ensuring users are not affected by such problems. PyereualJetwork aims to offer
|
|
9
9
|
|
10
10
|
Module functions:
|
11
11
|
-----------------
|
12
|
-
-
|
12
|
+
- update_model_to_v5_4()
|
13
13
|
|
14
14
|
Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
|
15
15
|
|
pyerualjetwork/model_ops.py
CHANGED
pyerualjetwork/nn.py
CHANGED
@@ -451,20 +451,14 @@ def learn(x_train, y_train, optimizer, template_model, gen, pop_size, fit_start=
|
|
451
451
|
|
452
452
|
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc,
|
453
453
|
best_loss, y_train, interval)
|
454
|
-
|
455
|
-
best_weight,
|
456
|
-
|
457
|
-
|
458
|
-
|
459
|
-
|
460
|
-
|
461
|
-
|
462
|
-
None,
|
463
|
-
None,
|
464
|
-
None,
|
465
|
-
None,
|
466
|
-
activation_potentiation
|
467
|
-
)
|
454
|
+
|
455
|
+
model = template_model._replace(weights=best_weight,
|
456
|
+
predictions=best_model[get_preds()],
|
457
|
+
accuracy=best_acc,
|
458
|
+
activations=final_activations,
|
459
|
+
softmax_predictions=best_model[get_preds_softmax()],
|
460
|
+
model_type=model_type,
|
461
|
+
activation_potentiation=activation_potentiation)
|
468
462
|
|
469
463
|
return model
|
470
464
|
|
@@ -492,20 +486,14 @@ def learn(x_train, y_train, optimizer, template_model, gen, pop_size, fit_start=
|
|
492
486
|
# Display final visualizations
|
493
487
|
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc,
|
494
488
|
train_loss, y_train, interval)
|
495
|
-
|
496
|
-
best_weight,
|
497
|
-
|
498
|
-
|
499
|
-
|
500
|
-
|
501
|
-
|
502
|
-
|
503
|
-
None,
|
504
|
-
None,
|
505
|
-
None,
|
506
|
-
None,
|
507
|
-
activation_potentiation
|
508
|
-
)
|
489
|
+
|
490
|
+
model = template_model._replace(weights=best_weight,
|
491
|
+
predictions=best_model[get_preds()],
|
492
|
+
accuracy=best_acc,
|
493
|
+
activations=final_activations,
|
494
|
+
softmax_predictions=best_model[get_preds_softmax()],
|
495
|
+
model_type=model_type,
|
496
|
+
activation_potentiation=activation_potentiation)
|
509
497
|
|
510
498
|
return model
|
511
499
|
|
@@ -570,20 +558,14 @@ def learn(x_train, y_train, optimizer, template_model, gen, pop_size, fit_start=
|
|
570
558
|
# Display final visualizations
|
571
559
|
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc,
|
572
560
|
train_loss, y_train, interval)
|
573
|
-
|
574
|
-
best_weight,
|
575
|
-
|
576
|
-
|
577
|
-
|
578
|
-
|
579
|
-
|
580
|
-
|
581
|
-
None,
|
582
|
-
None,
|
583
|
-
None,
|
584
|
-
None,
|
585
|
-
activation_potentiation
|
586
|
-
)
|
561
|
+
|
562
|
+
model = template_model._replace(weights=best_weight,
|
563
|
+
predictions=best_model[get_preds()],
|
564
|
+
accuracy=best_acc,
|
565
|
+
activations=final_activations,
|
566
|
+
softmax_predictions=best_model[get_preds_softmax()],
|
567
|
+
model_type=model_type,
|
568
|
+
activation_potentiation=activation_potentiation)
|
587
569
|
|
588
570
|
return model
|
589
571
|
|
@@ -612,20 +594,13 @@ def learn(x_train, y_train, optimizer, template_model, gen, pop_size, fit_start=
|
|
612
594
|
# Display final visualizations
|
613
595
|
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc, train_loss, y_train, interval)
|
614
596
|
|
615
|
-
model = template_model(
|
616
|
-
|
617
|
-
|
618
|
-
|
619
|
-
|
620
|
-
|
621
|
-
|
622
|
-
model_type,
|
623
|
-
None,
|
624
|
-
None,
|
625
|
-
None,
|
626
|
-
None,
|
627
|
-
activation_potentiation
|
628
|
-
)
|
597
|
+
model = template_model._replace(weights=best_weight,
|
598
|
+
predictions=best_model[get_preds()],
|
599
|
+
accuracy=best_acc,
|
600
|
+
activations=final_activations,
|
601
|
+
softmax_predictions=best_model[get_preds_softmax()],
|
602
|
+
model_type=model_type,
|
603
|
+
activation_potentiation=activation_potentiation)
|
629
604
|
|
630
605
|
return model
|
631
606
|
|
@@ -667,7 +642,7 @@ def evaluate(
|
|
667
642
|
cuda (bool, optional): CUDA GPU acceleration ? Default = False.
|
668
643
|
|
669
644
|
Returns:
|
670
|
-
tuple:
|
645
|
+
tuple: W, preds, accuracy, None, None, softmax_preds
|
671
646
|
"""
|
672
647
|
|
673
648
|
from .cpu.visualizations import plot_evaluate
|
@@ -692,19 +667,11 @@ def evaluate(
|
|
692
667
|
if model is None:
|
693
668
|
from .model_ops import get_model_template
|
694
669
|
template_model = get_model_template()
|
695
|
-
|
696
|
-
|
697
|
-
|
698
|
-
|
699
|
-
|
700
|
-
None,
|
701
|
-
None,
|
702
|
-
model_type,
|
703
|
-
None,
|
704
|
-
None,
|
705
|
-
None,
|
706
|
-
None,
|
707
|
-
activation_potentiations)
|
670
|
+
|
671
|
+
model = template_model._replace(weights=W,
|
672
|
+
activations=activations,
|
673
|
+
model_type=model_type,
|
674
|
+
activation_potentiation=activation_potentiations)
|
708
675
|
|
709
676
|
result = predict_from_memory(x_test, model, cuda=cuda)
|
710
677
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 5.
|
3
|
+
Version: 5.41
|
4
4
|
Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,11 +1,11 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=M8wDX2Ze7U05lRLij7xi-8GisOWef9QjxYOfKQwsIOg,3020
|
2
2
|
pyerualjetwork/ene.py,sha256=8g2XEPRm3NLqSaN7xihIj1xXdIjSrl8Q69zqWTIXPI4,42142
|
3
3
|
pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
|
4
4
|
pyerualjetwork/help.py,sha256=sn9jBzXkQsTZvdgsUXUpSs_BbYYIgY3whofg6dj8peI,848
|
5
|
-
pyerualjetwork/issue_solver.py,sha256=
|
5
|
+
pyerualjetwork/issue_solver.py,sha256=uay_9XK6xWnLmK2P_BeyDQlyNXzg_zYffnXYd228wZk,4102
|
6
6
|
pyerualjetwork/memory_ops.py,sha256=TUFh9SYWCKL6N-vNdWId_EwU313TuZomQCHOrltrD-4,14280
|
7
|
-
pyerualjetwork/model_ops.py,sha256=
|
8
|
-
pyerualjetwork/nn.py,sha256=
|
7
|
+
pyerualjetwork/model_ops.py,sha256=cvbESE77oYJKCObejNQDfHokJix6M-UP0zY-_3M4-jM,22658
|
8
|
+
pyerualjetwork/nn.py,sha256=68by_dONoNWcD2KXiDOMIDAkQbISoT6w2IdhgdWf1QM,36654
|
9
9
|
pyerualjetwork/old_cpu_model_ops.py,sha256=1KNgjUeYCO_TsA5RtbNiuIiBJzq8-rL2dE6jxKqCBU0,21481
|
10
10
|
pyerualjetwork/old_cuda_model_ops.py,sha256=KAscAd8e_I8Vqdd9BJaHd6-IG6fhxFglAFxys0sqmEo,23079
|
11
11
|
pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
@@ -14,14 +14,14 @@ pyerualjetwork/cpu/activation_functions.py,sha256=zZSoOQ452Ykp_RsHVxklxesJmmFguf
|
|
14
14
|
pyerualjetwork/cpu/data_ops.py,sha256=SPsIcjU0JPHfsnEmGjD8q-yTlpgYk-KPOPJ44dfp-nU,16143
|
15
15
|
pyerualjetwork/cpu/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
16
16
|
pyerualjetwork/cpu/metrics.py,sha256=NF8FARAqtuGlf4omVkQT4pOQZy7uePqzuHZGX9Y_Pn4,6076
|
17
|
-
pyerualjetwork/cpu/visualizations.py,sha256=
|
17
|
+
pyerualjetwork/cpu/visualizations.py,sha256=fzpzRDuAVKAoT4fQuxAYGQe-0kd7XvhGUjs8-m6J3lI,26946
|
18
18
|
pyerualjetwork/cuda/__init__.py,sha256=Kja6OmNaJ0giOhRNYw9hgGkh5N4F1EUS2v94E_rmp2k,839
|
19
19
|
pyerualjetwork/cuda/activation_functions.py,sha256=Gj-qalU0GoAWoZzbFFHsD-R0c0KzHwOK1wwUQneBE44,6872
|
20
20
|
pyerualjetwork/cuda/data_ops.py,sha256=k7NX-ckZ6-NwvioigACUHrekG7L5lO4bzTtQbBwH1Fc,18508
|
21
21
|
pyerualjetwork/cuda/loss_functions.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
22
22
|
pyerualjetwork/cuda/metrics.py,sha256=PjDBoRvr6va8vRvDIJJGBO4-I4uumrk3NCM1Vz4NJTo,5054
|
23
23
|
pyerualjetwork/cuda/visualizations.py,sha256=2mHE7iqqsN3K6xtCnemS4o_YWGS0bIV2IxF4cG6Ur9k,20090
|
24
|
-
pyerualjetwork-5.
|
25
|
-
pyerualjetwork-5.
|
26
|
-
pyerualjetwork-5.
|
27
|
-
pyerualjetwork-5.
|
24
|
+
pyerualjetwork-5.41.dist-info/METADATA,sha256=6HzgbuoZo3MHbGblwnKpIBVmaB7LgXrf_d3Ako-stWs,7988
|
25
|
+
pyerualjetwork-5.41.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
26
|
+
pyerualjetwork-5.41.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
27
|
+
pyerualjetwork-5.41.dist-info/RECORD,,
|
File without changes
|
File without changes
|