pyerualjetwork 5.40a2__py3-none-any.whl → 5.40a3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
42
42
  - Contact: tchasancan@gmail.com
43
43
  """
44
44
 
45
- __version__ = "5.40a2"
45
+ __version__ = "5.40a3"
46
46
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
47
47
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
48
48
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
@@ -407,13 +407,13 @@ def plot_evaluate(x_test, y_test, y_preds, model, cuda=False):
407
407
 
408
408
  def plot_decision_boundary(x, y, ax, activations, W, artist, model_type, activation_potentiation=False, cuda=False):
409
409
 
410
- from model_ops import get_model_template, predict_from_memory
410
+ from ..model_ops import get_model_template, predict_from_memory
411
411
 
412
412
  if not cuda:
413
413
  from .data_ops import decode_one_hot
414
414
 
415
415
  else:
416
- from cuda.data_ops import decode_one_hot
416
+ from ..cuda.data_ops import decode_one_hot
417
417
 
418
418
  feature_indices = [0, 1]
419
419
 
pyerualjetwork/nn.py CHANGED
@@ -212,10 +212,10 @@ def learn(x_train, y_train, optimizer, template_model, gen, pop_size, fit_start=
212
212
  initialize_visualization_for_learner,
213
213
  update_neuron_history_for_learner)
214
214
 
215
- else:
216
- from cuda.data_ops import batcher
217
- from cuda.loss_functions import categorical_crossentropy, binary_crossentropy
218
- from cuda.visualizations import (
215
+ else:
216
+ from .cuda.data_ops import batcher
217
+ from .cuda.loss_functions import categorical_crossentropy, binary_crossentropy
218
+ from .cuda.visualizations import (
219
219
  draw_neural_web,
220
220
  display_visualizations_for_learner,
221
221
  update_history_plots_for_learner,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5.40a2
3
+ Version: 5.40a3
4
4
  Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,11 +1,11 @@
1
- pyerualjetwork/__init__.py,sha256=TrWx6XHSPfDKKSo8LIBFCyVTOqZ2wsxnMFl_azEM5to,3022
1
+ pyerualjetwork/__init__.py,sha256=dcUbo2PGymqFLqclxg9F6xLh7ZbSCPgAelUSQ72mwZs,3022
2
2
  pyerualjetwork/ene.py,sha256=8g2XEPRm3NLqSaN7xihIj1xXdIjSrl8Q69zqWTIXPI4,42142
3
3
  pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
4
4
  pyerualjetwork/help.py,sha256=sn9jBzXkQsTZvdgsUXUpSs_BbYYIgY3whofg6dj8peI,848
5
5
  pyerualjetwork/issue_solver.py,sha256=W7DIetvWD535bjJ4JueTUmWRFceqr5B_U1tFjv0S7f0,4100
6
6
  pyerualjetwork/memory_ops.py,sha256=TUFh9SYWCKL6N-vNdWId_EwU313TuZomQCHOrltrD-4,14280
7
7
  pyerualjetwork/model_ops.py,sha256=sGPvgWFwLI5dVV4cRVqeA7Zc0NTiz8F-3v55UbiV9_k,22547
8
- pyerualjetwork/nn.py,sha256=GXTAoFjPxxiS2r0rMcr5DEb7t2aJXTYW8KXvDYaoltY,36277
8
+ pyerualjetwork/nn.py,sha256=hux6sVDv747jtDaFImj3pWZzAXkVPRb18P0Q-tn3KUk,36279
9
9
  pyerualjetwork/old_cpu_model_ops.py,sha256=1KNgjUeYCO_TsA5RtbNiuIiBJzq8-rL2dE6jxKqCBU0,21481
10
10
  pyerualjetwork/old_cuda_model_ops.py,sha256=KAscAd8e_I8Vqdd9BJaHd6-IG6fhxFglAFxys0sqmEo,23079
11
11
  pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
@@ -14,14 +14,14 @@ pyerualjetwork/cpu/activation_functions.py,sha256=zZSoOQ452Ykp_RsHVxklxesJmmFguf
14
14
  pyerualjetwork/cpu/data_ops.py,sha256=SPsIcjU0JPHfsnEmGjD8q-yTlpgYk-KPOPJ44dfp-nU,16143
15
15
  pyerualjetwork/cpu/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
16
16
  pyerualjetwork/cpu/metrics.py,sha256=NF8FARAqtuGlf4omVkQT4pOQZy7uePqzuHZGX9Y_Pn4,6076
17
- pyerualjetwork/cpu/visualizations.py,sha256=vaXhRlmxmr-R75UhgaoRgaYiMJPZ8prU229l3z3RF7I,27146
17
+ pyerualjetwork/cpu/visualizations.py,sha256=0gEvQveZ9GB3cAy9xPrN0hLUsRJEsHB17yykomo12P8,27150
18
18
  pyerualjetwork/cuda/__init__.py,sha256=Kja6OmNaJ0giOhRNYw9hgGkh5N4F1EUS2v94E_rmp2k,839
19
19
  pyerualjetwork/cuda/activation_functions.py,sha256=Gj-qalU0GoAWoZzbFFHsD-R0c0KzHwOK1wwUQneBE44,6872
20
20
  pyerualjetwork/cuda/data_ops.py,sha256=k7NX-ckZ6-NwvioigACUHrekG7L5lO4bzTtQbBwH1Fc,18508
21
21
  pyerualjetwork/cuda/loss_functions.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
22
22
  pyerualjetwork/cuda/metrics.py,sha256=PjDBoRvr6va8vRvDIJJGBO4-I4uumrk3NCM1Vz4NJTo,5054
23
23
  pyerualjetwork/cuda/visualizations.py,sha256=2mHE7iqqsN3K6xtCnemS4o_YWGS0bIV2IxF4cG6Ur9k,20090
24
- pyerualjetwork-5.40a2.dist-info/METADATA,sha256=cJazlaxYsamZZS9l_jS5cyMQP-UguRP5RvghjG-TZNw,7990
25
- pyerualjetwork-5.40a2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
26
- pyerualjetwork-5.40a2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
27
- pyerualjetwork-5.40a2.dist-info/RECORD,,
24
+ pyerualjetwork-5.40a3.dist-info/METADATA,sha256=rq-ZTS1AXCHgWTbvCKdLRkh4CjSHWXuaK6tzjc84jJM,7990
25
+ pyerualjetwork-5.40a3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
26
+ pyerualjetwork-5.40a3.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
27
+ pyerualjetwork-5.40a3.dist-info/RECORD,,