pyerualjetwork 5.36__py3-none-any.whl → 5.37__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
42
42
  - Contact: tchasancan@gmail.com
43
43
  """
44
44
 
45
- __version__ = "5.36"
45
+ __version__ = "5.37"
46
46
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
47
47
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
48
48
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
@@ -406,6 +406,9 @@ def load_model(model_name,
406
406
  W = W.tolist()
407
407
  W = [cp.array(item) for item in W]
408
408
 
409
+ elif model_type == 'PLAN':
410
+ W = cp.array(W)
411
+
409
412
  return W, None, test_acc, activations, scaler_params, None, model_type, WeightType, WeightFormat, device_version, df, activation_potentiation
410
413
 
411
414
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5.36
3
+ Version: 5.37
4
4
  Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=tChKNLQYWO_Y9Rg8bAQILFpJolJbGuceL3F6TrZF78A,2704
1
+ pyerualjetwork/__init__.py,sha256=mq2efXuCnoIrT6GPNSgA0XIN3F-3qITy3fxvKiVYZyg,2704
2
2
  pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
3
3
  pyerualjetwork/help.py,sha256=Nyi0gHAN9ZnO4wgQLeENt0n7tSCZ3hJmjaJ853eGjCE,831
4
4
  pyerualjetwork/issue_solver.py,sha256=3pZTGotS29sy3pIuGQoJFUePibtSzS-tNoU80T_Usgk,3131
@@ -19,10 +19,10 @@ pyerualjetwork/cuda/data_ops.py,sha256=SiNodFNmWyTPY_KnKuAi9biPRdpTAYY3XM01bRSUP
19
19
  pyerualjetwork/cuda/ene.py,sha256=dwH5l7CQqj4kUbcj8vC9gIgEdjFfRN-jw-06ABN-TiU,44976
20
20
  pyerualjetwork/cuda/loss_functions.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
21
21
  pyerualjetwork/cuda/metrics.py,sha256=PjDBoRvr6va8vRvDIJJGBO4-I4uumrk3NCM1Vz4NJTo,5054
22
- pyerualjetwork/cuda/model_ops.py,sha256=cij0UKy4G0Zg5Z_VFCIdBEjWUOBQcsgEsGDCQSuuJ_U,23021
22
+ pyerualjetwork/cuda/model_ops.py,sha256=KJXZ_sxt7JfgEh6jLObhbtmn7zcMn708xeEZthzcNrI,23080
23
23
  pyerualjetwork/cuda/nn.py,sha256=EDdiWNUdrEHZXQ9K7qM74Q7OpacAgWM5MsQC8YANlY4,33164
24
24
  pyerualjetwork/cuda/visualizations.py,sha256=9l5BhXqXoeopdhLvVGvjH1TKYZb9JdKOsSE2IYD02zs,28569
25
- pyerualjetwork-5.36.dist-info/METADATA,sha256=1jv9MpaFV0bt2FrrC2Ln8kS0OAkt_O8laYyYmkyIrTo,8020
26
- pyerualjetwork-5.36.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
27
- pyerualjetwork-5.36.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
28
- pyerualjetwork-5.36.dist-info/RECORD,,
25
+ pyerualjetwork-5.37.dist-info/METADATA,sha256=DxPEG53B8FA8rX7xYx_WlxA6_R1nKs2XLlgIBjUtRRc,8020
26
+ pyerualjetwork-5.37.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
27
+ pyerualjetwork-5.37.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
28
+ pyerualjetwork-5.37.dist-info/RECORD,,