pyerualjetwork 5.33b1__py3-none-any.whl → 5.35__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/cpu/ene.py +1 -1
- pyerualjetwork/cpu/nn.py +13 -12
- pyerualjetwork/cuda/ene.py +1 -1
- pyerualjetwork/cuda/nn.py +4 -4
- {pyerualjetwork-5.33b1.dist-info → pyerualjetwork-5.35.dist-info}/METADATA +1 -1
- {pyerualjetwork-5.33b1.dist-info → pyerualjetwork-5.35.dist-info}/RECORD +9 -9
- {pyerualjetwork-5.33b1.dist-info → pyerualjetwork-5.35.dist-info}/WHEEL +0 -0
- {pyerualjetwork-5.33b1.dist-info → pyerualjetwork-5.35.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
|
|
42
42
|
- Contact: tchasancan@gmail.com
|
43
43
|
"""
|
44
44
|
|
45
|
-
__version__ = "5.
|
45
|
+
__version__ = "5.35"
|
46
46
|
__update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
|
47
47
|
* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
|
48
48
|
* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
pyerualjetwork/cpu/ene.py
CHANGED
@@ -227,7 +227,7 @@ def evolver(weights,
|
|
227
227
|
|
228
228
|
is_mlp (bool, optional): Evolve PLAN model or MLP model ? Default: False (PLAN)
|
229
229
|
|
230
|
-
save_best_genome (bool, optional): Save the best genome of the previous generation to the next generation. Default: False
|
230
|
+
save_best_genome (bool, optional): Save the best genome of the previous generation to the next generation. (index of best individual: 0) Default: False
|
231
231
|
|
232
232
|
dtype (numpy.dtype, optional): Data type for the arrays. Default: np.float32.
|
233
233
|
Example: np.float64 or np.float16 [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not recommended!].
|
pyerualjetwork/cpu/nn.py
CHANGED
@@ -277,7 +277,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
|
|
277
277
|
# LEARNING STARTED
|
278
278
|
for i in range(gen):
|
279
279
|
|
280
|
-
|
280
|
+
# TRANSFORMATION PLAN TO MLP FOR PTNN (in later generations)
|
281
281
|
if model_type == 'PLAN' and transfer_learning:
|
282
282
|
if i == gen_copy[0]:
|
283
283
|
|
@@ -295,14 +295,15 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
|
|
295
295
|
|
296
296
|
weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), neurons=neurons_copy, activation_functions=activation_functions, population_size=pop_size, dtype=dtype)
|
297
297
|
|
298
|
-
# 0 indexed individual will keep PLAN's learned informations and in later generations it will share
|
299
|
-
for
|
300
|
-
|
298
|
+
# 0 indexed individual will keep PLAN's learned informations and in later generations it will share other individuals.
|
299
|
+
for l in range(1, len(weight_pop[0])):
|
300
|
+
original_shape = weight_pop[0][l].shape
|
301
301
|
|
302
|
-
identity_matrix = np.eye(
|
303
|
-
|
304
|
-
|
305
|
-
|
302
|
+
identity_matrix = np.eye(original_shape[0], original_shape[1], dtype=weight_pop[0][l].dtype)
|
303
|
+
weight_pop[0][l] = identity_matrix
|
304
|
+
|
305
|
+
for l in range(len(weight_pop)):
|
306
|
+
weight_pop[l][0] = np.copy(best_weight)
|
306
307
|
|
307
308
|
best_weight = np.array(weight_pop[0], dtype=object)
|
308
309
|
final_activations = act_pop[0]
|
@@ -414,7 +415,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
|
|
414
415
|
|
415
416
|
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc,
|
416
417
|
best_loss, y_train, interval)
|
417
|
-
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None,
|
418
|
+
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None, model_type, None, None, None, None, activation_potentiation
|
418
419
|
|
419
420
|
# Check target loss
|
420
421
|
if target_loss is not None and best_loss <= target_loss:
|
@@ -438,7 +439,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
|
|
438
439
|
# Display final visualizations
|
439
440
|
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc,
|
440
441
|
train_loss, y_train, interval)
|
441
|
-
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None,
|
442
|
+
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None, model_type, None, None, None, None, activation_potentiation
|
442
443
|
|
443
444
|
|
444
445
|
progress.update(1)
|
@@ -493,7 +494,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
|
|
493
494
|
# Display final visualizations
|
494
495
|
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc,
|
495
496
|
train_loss, y_train, interval)
|
496
|
-
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None,
|
497
|
+
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None, model_type, None, None, None, None, activation_potentiation
|
497
498
|
|
498
499
|
# Final evaluation
|
499
500
|
progress.close()
|
@@ -516,7 +517,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
|
|
516
517
|
|
517
518
|
# Display final visualizations
|
518
519
|
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc, train_loss, y_train, interval)
|
519
|
-
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None,
|
520
|
+
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None, model_type, None, None, None, None, activation_potentiation
|
520
521
|
|
521
522
|
|
522
523
|
def evaluate(
|
pyerualjetwork/cuda/ene.py
CHANGED
@@ -227,7 +227,7 @@ def evolver(weights,
|
|
227
227
|
|
228
228
|
is_mlp (bool, optional): Evolve PLAN model or MLP model ? Default: False (PLAN)
|
229
229
|
|
230
|
-
save_best_genome (bool, optional): Save the best genome of the previous generation to the next generation. Default: False
|
230
|
+
save_best_genome (bool, optional): Save the best genome of the previous generation to the next generation. (index of best individual: 0) Default: False
|
231
231
|
|
232
232
|
dtype (cupy.dtype): Data type for the arrays. Default: cp.float32.
|
233
233
|
Example: cp.float64 or cp.float16 [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not recommended!].
|
pyerualjetwork/cuda/nn.py
CHANGED
@@ -425,7 +425,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
|
|
425
425
|
|
426
426
|
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc,
|
427
427
|
best_loss, y_train, interval)
|
428
|
-
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None,
|
428
|
+
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None, model_type, None, None, None, None, activation_potentiation
|
429
429
|
|
430
430
|
# Check target loss
|
431
431
|
if target_loss is not None and best_loss <= target_loss:
|
@@ -449,7 +449,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
|
|
449
449
|
# Display final visualizations
|
450
450
|
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc,
|
451
451
|
train_loss, y_train, interval)
|
452
|
-
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None,
|
452
|
+
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None, model_type, None, None, None, None, activation_potentiation, None, None, None, None, None, None, None, activation_potentiation
|
453
453
|
|
454
454
|
|
455
455
|
progress.update(1)
|
@@ -504,7 +504,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
|
|
504
504
|
# Display final visualizations
|
505
505
|
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc,
|
506
506
|
train_loss, y_train, interval)
|
507
|
-
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None,
|
507
|
+
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None, model_type, None, None, None, None, activation_potentiation
|
508
508
|
|
509
509
|
# Final evaluation
|
510
510
|
progress.close()
|
@@ -526,7 +526,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
|
|
526
526
|
|
527
527
|
# Display final visualizations
|
528
528
|
display_visualizations_for_learner(viz_objects, best_weight, data, best_acc, train_loss, y_train, interval)
|
529
|
-
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None,
|
529
|
+
return best_weight, best_model[get_preds_softmax()], best_acc, final_activations, None, None, model_type, None, None, None, None, activation_potentiation
|
530
530
|
|
531
531
|
def evaluate(
|
532
532
|
x_test,
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 5.
|
3
|
+
Version: 5.35
|
4
4
|
Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=tzemMNwT26zguana1GNc5FlQlTKpoAjo6nrcXSoSspQ,2704
|
2
2
|
pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
|
3
3
|
pyerualjetwork/help.py,sha256=Nyi0gHAN9ZnO4wgQLeENt0n7tSCZ3hJmjaJ853eGjCE,831
|
4
4
|
pyerualjetwork/issue_solver.py,sha256=3pZTGotS29sy3pIuGQoJFUePibtSzS-tNoU80T_Usgk,3131
|
@@ -7,22 +7,22 @@ pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
|
7
7
|
pyerualjetwork/cpu/__init__.py,sha256=0yAYner_-v7SmT3P7JV2itU8xJUQdQpb40dhAMQiZkc,829
|
8
8
|
pyerualjetwork/cpu/activation_functions.py,sha256=zZSoOQ452Ykp_RsHVxklxesJmmFgufyIB4F3WQjudEQ,6689
|
9
9
|
pyerualjetwork/cpu/data_ops.py,sha256=5biKr7pqLbJOayHYgGdQV1K5GqKbcOvrbbuAyByuDC8,16154
|
10
|
-
pyerualjetwork/cpu/ene.py,sha256=
|
10
|
+
pyerualjetwork/cpu/ene.py,sha256=7ZPR7NDhuXCFSucH0l-_vUTDILnQOH-Zxv83Yy5gLL8,44451
|
11
11
|
pyerualjetwork/cpu/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
12
12
|
pyerualjetwork/cpu/metrics.py,sha256=WhZ8iEqWehaygPRADUlhA5j_Qv3UwqV_eMxpyRVkeVs,6070
|
13
13
|
pyerualjetwork/cpu/model_ops.py,sha256=sWsP_7Gfa8_DJ2X7AUrOkeXnz2Eej6573grQQ3CooXM,20295
|
14
|
-
pyerualjetwork/cpu/nn.py,sha256=
|
14
|
+
pyerualjetwork/cpu/nn.py,sha256=AiL1q-pWr-tzTtQlzoKRnqHQVEvgrUPLUl6_RY02T5s,32032
|
15
15
|
pyerualjetwork/cpu/visualizations.py,sha256=rOQsc-W8b71z7ovXSoF49lx4fmpvlaHLsyj9ejWnhnI,28164
|
16
16
|
pyerualjetwork/cuda/__init__.py,sha256=NbqvAS4jlMdoFdXa5_hi5ukXQ5zAZR_5BQ4QAqtiKug,879
|
17
17
|
pyerualjetwork/cuda/activation_functions.py,sha256=FmoSAxDr9SGO4nkE6ZflXK4pmvZ0sL3Epe1Lz-3GOVI,6766
|
18
18
|
pyerualjetwork/cuda/data_ops.py,sha256=SiNodFNmWyTPY_KnKuAi9biPRdpTAYY3XM01bRSUPCs,18510
|
19
|
-
pyerualjetwork/cuda/ene.py,sha256=
|
19
|
+
pyerualjetwork/cuda/ene.py,sha256=dwH5l7CQqj4kUbcj8vC9gIgEdjFfRN-jw-06ABN-TiU,44976
|
20
20
|
pyerualjetwork/cuda/loss_functions.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
21
21
|
pyerualjetwork/cuda/metrics.py,sha256=PjDBoRvr6va8vRvDIJJGBO4-I4uumrk3NCM1Vz4NJTo,5054
|
22
22
|
pyerualjetwork/cuda/model_ops.py,sha256=iQPuxmthKxP2GTFLHJppxoU64C6mEpkDW-DsfwFGiuY,21020
|
23
|
-
pyerualjetwork/cuda/nn.py,sha256=
|
23
|
+
pyerualjetwork/cuda/nn.py,sha256=EDdiWNUdrEHZXQ9K7qM74Q7OpacAgWM5MsQC8YANlY4,33164
|
24
24
|
pyerualjetwork/cuda/visualizations.py,sha256=9l5BhXqXoeopdhLvVGvjH1TKYZb9JdKOsSE2IYD02zs,28569
|
25
|
-
pyerualjetwork-5.
|
26
|
-
pyerualjetwork-5.
|
27
|
-
pyerualjetwork-5.
|
28
|
-
pyerualjetwork-5.
|
25
|
+
pyerualjetwork-5.35.dist-info/METADATA,sha256=N_4aSa6MZC16yCH49yTSqOfDJUekrZ4etURXIw9v7xA,8020
|
26
|
+
pyerualjetwork-5.35.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
27
|
+
pyerualjetwork-5.35.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
28
|
+
pyerualjetwork-5.35.dist-info/RECORD,,
|
File without changes
|
File without changes
|