pyerualjetwork 5.33b1__py3-none-any.whl → 5.34__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
42
42
  - Contact: tchasancan@gmail.com
43
43
  """
44
44
 
45
- __version__ = "5.33b1"
45
+ __version__ = "5.34"
46
46
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
47
47
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
48
48
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
pyerualjetwork/cpu/ene.py CHANGED
@@ -227,7 +227,7 @@ def evolver(weights,
227
227
 
228
228
  is_mlp (bool, optional): Evolve PLAN model or MLP model ? Default: False (PLAN)
229
229
 
230
- save_best_genome (bool, optional): Save the best genome of the previous generation to the next generation. Default: False
230
+ save_best_genome (bool, optional): Save the best genome of the previous generation to the next generation. (index of best individual: 0) Default: False
231
231
 
232
232
  dtype (numpy.dtype, optional): Data type for the arrays. Default: np.float32.
233
233
  Example: np.float64 or np.float16 [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not recommended!].
@@ -227,7 +227,7 @@ def evolver(weights,
227
227
 
228
228
  is_mlp (bool, optional): Evolve PLAN model or MLP model ? Default: False (PLAN)
229
229
 
230
- save_best_genome (bool, optional): Save the best genome of the previous generation to the next generation. Default: False
230
+ save_best_genome (bool, optional): Save the best genome of the previous generation to the next generation. (index of best individual: 0) Default: False
231
231
 
232
232
  dtype (cupy.dtype): Data type for the arrays. Default: cp.float32.
233
233
  Example: cp.float64 or cp.float16 [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not recommended!].
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5.33b1
3
+ Version: 5.34
4
4
  Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=W4bT3WHBwgE4q1fLmKqar1XKjQwP28HnECwKutVHPt4,2706
1
+ pyerualjetwork/__init__.py,sha256=tCWOM5zxBL1ENr6KCQIVWJMrwt6GyPxMbCqesjaiT1w,2704
2
2
  pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
3
3
  pyerualjetwork/help.py,sha256=Nyi0gHAN9ZnO4wgQLeENt0n7tSCZ3hJmjaJ853eGjCE,831
4
4
  pyerualjetwork/issue_solver.py,sha256=3pZTGotS29sy3pIuGQoJFUePibtSzS-tNoU80T_Usgk,3131
@@ -7,7 +7,7 @@ pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
7
7
  pyerualjetwork/cpu/__init__.py,sha256=0yAYner_-v7SmT3P7JV2itU8xJUQdQpb40dhAMQiZkc,829
8
8
  pyerualjetwork/cpu/activation_functions.py,sha256=zZSoOQ452Ykp_RsHVxklxesJmmFgufyIB4F3WQjudEQ,6689
9
9
  pyerualjetwork/cpu/data_ops.py,sha256=5biKr7pqLbJOayHYgGdQV1K5GqKbcOvrbbuAyByuDC8,16154
10
- pyerualjetwork/cpu/ene.py,sha256=dfIbcwer_iksec_P6Owq2aMYrAT-8WVUGfglkThRnbY,44421
10
+ pyerualjetwork/cpu/ene.py,sha256=7ZPR7NDhuXCFSucH0l-_vUTDILnQOH-Zxv83Yy5gLL8,44451
11
11
  pyerualjetwork/cpu/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
12
12
  pyerualjetwork/cpu/metrics.py,sha256=WhZ8iEqWehaygPRADUlhA5j_Qv3UwqV_eMxpyRVkeVs,6070
13
13
  pyerualjetwork/cpu/model_ops.py,sha256=sWsP_7Gfa8_DJ2X7AUrOkeXnz2Eej6573grQQ3CooXM,20295
@@ -16,13 +16,13 @@ pyerualjetwork/cpu/visualizations.py,sha256=rOQsc-W8b71z7ovXSoF49lx4fmpvlaHLsyj9
16
16
  pyerualjetwork/cuda/__init__.py,sha256=NbqvAS4jlMdoFdXa5_hi5ukXQ5zAZR_5BQ4QAqtiKug,879
17
17
  pyerualjetwork/cuda/activation_functions.py,sha256=FmoSAxDr9SGO4nkE6ZflXK4pmvZ0sL3Epe1Lz-3GOVI,6766
18
18
  pyerualjetwork/cuda/data_ops.py,sha256=SiNodFNmWyTPY_KnKuAi9biPRdpTAYY3XM01bRSUPCs,18510
19
- pyerualjetwork/cuda/ene.py,sha256=G4y32L6Tl3oe3oc5FxhXh1tDwk44xsocJOUMskv3buk,44946
19
+ pyerualjetwork/cuda/ene.py,sha256=dwH5l7CQqj4kUbcj8vC9gIgEdjFfRN-jw-06ABN-TiU,44976
20
20
  pyerualjetwork/cuda/loss_functions.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
21
21
  pyerualjetwork/cuda/metrics.py,sha256=PjDBoRvr6va8vRvDIJJGBO4-I4uumrk3NCM1Vz4NJTo,5054
22
22
  pyerualjetwork/cuda/model_ops.py,sha256=iQPuxmthKxP2GTFLHJppxoU64C6mEpkDW-DsfwFGiuY,21020
23
23
  pyerualjetwork/cuda/nn.py,sha256=7rbaIEcmssaFgcionWVRmKijlgFyftVjf-MMNaLO_28,33140
24
24
  pyerualjetwork/cuda/visualizations.py,sha256=9l5BhXqXoeopdhLvVGvjH1TKYZb9JdKOsSE2IYD02zs,28569
25
- pyerualjetwork-5.33b1.dist-info/METADATA,sha256=vWuWmj8I7Tq_j77iIDaCCorcXQ_ZZ40BxEBrxO_0m0M,8022
26
- pyerualjetwork-5.33b1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
27
- pyerualjetwork-5.33b1.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
28
- pyerualjetwork-5.33b1.dist-info/RECORD,,
25
+ pyerualjetwork-5.34.dist-info/METADATA,sha256=eWKWVawKyT23vqUpmA9Iq4TycR-Zg4B6hqbojcdVtw4,8020
26
+ pyerualjetwork-5.34.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
27
+ pyerualjetwork-5.34.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
28
+ pyerualjetwork-5.34.dist-info/RECORD,,