pyerualjetwork 5.33b0__py3-none-any.whl → 5.33b1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
42
42
  - Contact: tchasancan@gmail.com
43
43
  """
44
44
 
45
- __version__ = "5.33b0"
45
+ __version__ = "5.33b1"
46
46
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
47
47
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
48
48
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
pyerualjetwork/cpu/ene.py CHANGED
@@ -314,7 +314,7 @@ def evolver(weights,
314
314
  else:
315
315
  raise ValueError("genome population size must be even number. for example: not 99, make 100 or 98.")
316
316
 
317
- if weight_evolve is False: origin_weights = np.copy(weights)
317
+ if weight_evolve is False: origin_weights = copy.deepcopy(weights)
318
318
 
319
319
  if is_mlp:
320
320
  activation_mutate_add_prob = 0
@@ -336,7 +336,7 @@ def evolver(weights,
336
336
 
337
337
  good_weights = weights[slice_center:]
338
338
  bad_weights = weights[:slice_center]
339
- best_weight = np.copy(good_weights[-1]) if is_mlp is False else copy.deepcopy(good_weights[-1])
339
+ best_weight = copy.deepcopy(good_weights[-1])
340
340
 
341
341
  good_activations = list(activations[slice_center:])
342
342
  bad_activations = list(activations[:slice_center])
@@ -353,23 +353,23 @@ def evolver(weights,
353
353
  best_fitness = normalized_fitness[-1]
354
354
  epsilon = np.finfo(float).eps
355
355
 
356
- child_W = np.copy(bad_weights)
356
+ child_W = copy.deepcopy(bad_weights)
357
357
  child_act = copy.deepcopy(bad_activations)
358
358
 
359
- mutated_W = np.copy(bad_weights)
359
+ mutated_W = copy.deepcopy(bad_weights)
360
360
  mutated_act = copy.deepcopy(bad_activations)
361
361
 
362
362
 
363
363
  for i in range(len(bad_weights)):
364
364
 
365
365
  if policy == 'aggressive':
366
- first_parent_W = np.copy(best_weight)
366
+ first_parent_W = copy.deepcopy(best_weight)
367
367
  first_parent_act = copy.deepcopy(best_activations)
368
368
  first_parent_fitness = best_fitness
369
369
 
370
370
  elif policy == 'explorer':
371
- first_parent_W = good_weights[i]
372
- first_parent_act = good_activations[i]
371
+ first_parent_W = copy.deepcopy(good_weights[i])
372
+ first_parent_act = copy.deepcopy(good_activations[i])
373
373
  first_parent_fitness = normalized_fitness[len(good_weights) + i]
374
374
 
375
375
  else: raise ValueError("policy parameter must be: 'aggressive' or 'explorer'")
@@ -475,8 +475,8 @@ def evolver(weights,
475
475
  activations = child_act + mutated_act
476
476
 
477
477
  if save_best_genome:
478
- weights[0] = best_weight
479
- activations[0] = best_activations
478
+ weights[0] = copy.deepcopy(best_weight)
479
+ activations[0] = copy.deepcopy(best_activations)
480
480
 
481
481
  ### INFO PRINTING CONSOLE
482
482
 
@@ -664,18 +664,18 @@ def cross_over(first_parent_W,
664
664
  decision = dominant_parent_selection(bad_genomes_selection_prob)
665
665
 
666
666
  if decision == 'first_parent':
667
- dominant_parent_W = np.copy(first_parent_W)
667
+ dominant_parent_W = copy.deepcopy(first_parent_W)
668
668
  dominant_parent_act = first_parent_act
669
669
 
670
- undominant_parent_W = np.copy(second_parent_W)
670
+ undominant_parent_W = copy.deepcopy(second_parent_W)
671
671
  undominant_parent_act = second_parent_act
672
672
  succes = second_parent_fitness + epsilon
673
673
 
674
674
  elif decision == 'second_parent':
675
- dominant_parent_W = np.copy(second_parent_W)
675
+ dominant_parent_W = copy.deepcopy(second_parent_W)
676
676
  dominant_parent_act = second_parent_act
677
677
 
678
- undominant_parent_W = np.copy(first_parent_W)
678
+ undominant_parent_W = copy.deepcopy(first_parent_W)
679
679
  undominant_parent_act = first_parent_act
680
680
  succes = first_parent_fitness + epsilon
681
681
 
@@ -713,7 +713,7 @@ def cross_over(first_parent_W,
713
713
  if isinstance(dominant_parent_act, str): dominant_parent_act = [dominant_parent_act]
714
714
  if isinstance(undominant_parent_act, str): undominant_parent_act = [undominant_parent_act]
715
715
 
716
- child_act = list(np.copy(dominant_parent_act))
716
+ child_act = list(copy.deepcopy(dominant_parent_act))
717
717
 
718
718
  activation_selection_add_prob = 1 - activation_selection_add_prob # if prob 0.8 (%80) then 1 - 0.8. Because 0-1 random number probably greater than 0.2
719
719
  potential_activation_selection_add = random.uniform(0, 1)
@@ -313,7 +313,7 @@ def evolver(weights,
313
313
  else:
314
314
  raise ValueError("genome population size must be even number. for example: not 99, make 100 or 98.")
315
315
 
316
- if weight_evolve is False: origin_weights = cp.copy(weights) if is_mlp else copy.deepcopy(weights)
316
+ if weight_evolve is False: origin_weights = copy.deepcopy(weights)
317
317
 
318
318
  if is_mlp:
319
319
  activation_mutate_add_prob = 0
@@ -345,7 +345,7 @@ def evolver(weights,
345
345
 
346
346
  good_weights = weights[slice_center:]
347
347
  bad_weights = weights[:slice_center]
348
- best_weight = cp.copy(good_weights[-1])
348
+ best_weight = copy.deepcopy(good_weights[-1])
349
349
 
350
350
  good_activations = list(activations[slice_center:])
351
351
  bad_activations = list(activations[:slice_center])
@@ -362,23 +362,23 @@ def evolver(weights,
362
362
  best_fitness = normalized_fitness[-1]
363
363
  epsilon = cp.finfo(float).eps
364
364
 
365
- child_W = cp.copy(bad_weights)
365
+ child_W = copy.deepcopy(bad_weights)
366
366
  child_act = copy.deepcopy(bad_activations)
367
367
 
368
- mutated_W = cp.copy(bad_weights)
368
+ mutated_W = copy.deepcopy(bad_weights)
369
369
  mutated_act = copy.deepcopy(bad_activations)
370
370
 
371
371
 
372
372
  for i in range(len(bad_weights)):
373
373
 
374
374
  if policy == 'aggressive':
375
- first_parent_W = best_weight
376
- first_parent_act = best_activations
375
+ first_parent_W = copy.deepcopy(best_weight)
376
+ first_parent_act = copy.deepcopy(best_activations)
377
377
  first_parent_fitness = best_fitness
378
378
 
379
379
  elif policy == 'explorer':
380
- first_parent_W = good_weights[i]
381
- first_parent_act = good_activations[i]
380
+ first_parent_W = copy.deepcopy(good_weights[i])
381
+ first_parent_act = copy.deepcopy(good_activations[i])
382
382
  first_parent_fitness = normalized_fitness[len(good_weights) + i]
383
383
 
384
384
  else: raise ValueError("policy parameter must be: 'aggressive' or 'explorer'")
@@ -493,8 +493,8 @@ def evolver(weights,
493
493
  activations = child_act + mutated_act
494
494
 
495
495
  if save_best_genome:
496
- weights[0] = best_weight
497
- activations[0] = best_activations
496
+ weights[0] = copy.deepcopy(best_weight)
497
+ activations[0] = copy.deepcopy(best_activations)
498
498
 
499
499
  ### INFO PRINTING CONSOLE
500
500
 
@@ -682,18 +682,18 @@ def cross_over(first_parent_W,
682
682
  decision = dominant_parent_selection(bad_genomes_selection_prob)
683
683
 
684
684
  if decision == 'first_parent':
685
- dominant_parent_W = cp.copy(first_parent_W)
685
+ dominant_parent_W = copy.deepcopy(first_parent_W)
686
686
  dominant_parent_act = first_parent_act
687
687
 
688
- undominant_parent_W = cp.copy(second_parent_W)
688
+ undominant_parent_W = copy.deepcopy(second_parent_W)
689
689
  undominant_parent_act = second_parent_act
690
690
  succes = second_parent_fitness + epsilon
691
691
 
692
692
  elif decision == 'second_parent':
693
- dominant_parent_W = cp.copy(second_parent_W)
693
+ dominant_parent_W = copy.deepcopy(second_parent_W)
694
694
  dominant_parent_act = second_parent_act
695
695
 
696
- undominant_parent_W = cp.copy(first_parent_W)
696
+ undominant_parent_W = copy.deepcopy(first_parent_W)
697
697
  undominant_parent_act = first_parent_act
698
698
  succes = first_parent_fitness + epsilon
699
699
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5.33b0
3
+ Version: 5.33b1
4
4
  Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=GHbTLIkgXXlQ-z0DeZnxv3lNN-0uXA9M1974xvgM_wk,2706
1
+ pyerualjetwork/__init__.py,sha256=W4bT3WHBwgE4q1fLmKqar1XKjQwP28HnECwKutVHPt4,2706
2
2
  pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
3
3
  pyerualjetwork/help.py,sha256=Nyi0gHAN9ZnO4wgQLeENt0n7tSCZ3hJmjaJ853eGjCE,831
4
4
  pyerualjetwork/issue_solver.py,sha256=3pZTGotS29sy3pIuGQoJFUePibtSzS-tNoU80T_Usgk,3131
@@ -7,7 +7,7 @@ pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
7
7
  pyerualjetwork/cpu/__init__.py,sha256=0yAYner_-v7SmT3P7JV2itU8xJUQdQpb40dhAMQiZkc,829
8
8
  pyerualjetwork/cpu/activation_functions.py,sha256=zZSoOQ452Ykp_RsHVxklxesJmmFgufyIB4F3WQjudEQ,6689
9
9
  pyerualjetwork/cpu/data_ops.py,sha256=5biKr7pqLbJOayHYgGdQV1K5GqKbcOvrbbuAyByuDC8,16154
10
- pyerualjetwork/cpu/ene.py,sha256=-OOqol5sbmwv4Cd_I7MeXztXF_v3dA-qwYdlR9P9U5A,44357
10
+ pyerualjetwork/cpu/ene.py,sha256=dfIbcwer_iksec_P6Owq2aMYrAT-8WVUGfglkThRnbY,44421
11
11
  pyerualjetwork/cpu/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
12
12
  pyerualjetwork/cpu/metrics.py,sha256=WhZ8iEqWehaygPRADUlhA5j_Qv3UwqV_eMxpyRVkeVs,6070
13
13
  pyerualjetwork/cpu/model_ops.py,sha256=sWsP_7Gfa8_DJ2X7AUrOkeXnz2Eej6573grQQ3CooXM,20295
@@ -16,13 +16,13 @@ pyerualjetwork/cpu/visualizations.py,sha256=rOQsc-W8b71z7ovXSoF49lx4fmpvlaHLsyj9
16
16
  pyerualjetwork/cuda/__init__.py,sha256=NbqvAS4jlMdoFdXa5_hi5ukXQ5zAZR_5BQ4QAqtiKug,879
17
17
  pyerualjetwork/cuda/activation_functions.py,sha256=FmoSAxDr9SGO4nkE6ZflXK4pmvZ0sL3Epe1Lz-3GOVI,6766
18
18
  pyerualjetwork/cuda/data_ops.py,sha256=SiNodFNmWyTPY_KnKuAi9biPRdpTAYY3XM01bRSUPCs,18510
19
- pyerualjetwork/cuda/ene.py,sha256=o5W8mZ6FUA2Xd09GWA_dzr0hfWx2EdsMaqihMipE2Ow,44846
19
+ pyerualjetwork/cuda/ene.py,sha256=G4y32L6Tl3oe3oc5FxhXh1tDwk44xsocJOUMskv3buk,44946
20
20
  pyerualjetwork/cuda/loss_functions.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
21
21
  pyerualjetwork/cuda/metrics.py,sha256=PjDBoRvr6va8vRvDIJJGBO4-I4uumrk3NCM1Vz4NJTo,5054
22
22
  pyerualjetwork/cuda/model_ops.py,sha256=iQPuxmthKxP2GTFLHJppxoU64C6mEpkDW-DsfwFGiuY,21020
23
23
  pyerualjetwork/cuda/nn.py,sha256=7rbaIEcmssaFgcionWVRmKijlgFyftVjf-MMNaLO_28,33140
24
24
  pyerualjetwork/cuda/visualizations.py,sha256=9l5BhXqXoeopdhLvVGvjH1TKYZb9JdKOsSE2IYD02zs,28569
25
- pyerualjetwork-5.33b0.dist-info/METADATA,sha256=ejryEVEMNyjOJ6gN8J9rCwl1uBszwXpav-nVi0zQmHw,8022
26
- pyerualjetwork-5.33b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
27
- pyerualjetwork-5.33b0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
28
- pyerualjetwork-5.33b0.dist-info/RECORD,,
25
+ pyerualjetwork-5.33b1.dist-info/METADATA,sha256=vWuWmj8I7Tq_j77iIDaCCorcXQ_ZZ40BxEBrxO_0m0M,8022
26
+ pyerualjetwork-5.33b1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
27
+ pyerualjetwork-5.33b1.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
28
+ pyerualjetwork-5.33b1.dist-info/RECORD,,