pyerualjetwork 5.32__py3-none-any.whl → 5.33b0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
42
42
  - Contact: tchasancan@gmail.com
43
43
  """
44
44
 
45
- __version__ = "5.32"
45
+ __version__ = "5.33b0"
46
46
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
47
47
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
48
48
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
pyerualjetwork/cpu/ene.py CHANGED
@@ -157,7 +157,7 @@ def evolver(weights,
157
157
  what_gen (int): The current generation number, used for informational purposes or logging.
158
158
 
159
159
  fitness (numpy.ndarray): A 1D array containing the fitness values of each genome.
160
- The array is used to rank the genomes based on their performance. PLANEAT maximizes or minimizes this fitness based on the `target_fitness` parameter.
160
+ The array is used to rank the genomes based on their performance. ENE maximizes or minimizes this fitness based on the `target_fitness` parameter.
161
161
 
162
162
  weight_evolve (bool, optional): Are weights to be evolves or just activation combinations Default: True. Note: Regardless of whether this parameter is True or False, you must give the evolver function a list of weights equal to the number of activation potentiations. You can create completely random weights if you want. If this parameter is False, the weights entering the evolver function and the resulting weights will be exactly the same.
163
163
 
@@ -340,7 +340,7 @@ def evolver(weights,
340
340
 
341
341
  good_activations = list(activations[slice_center:])
342
342
  bad_activations = list(activations[:slice_center])
343
- best_activations = good_activations[-1].copy() if isinstance(good_activations[-1], list) else good_activations[-1]
343
+ best_activations = copy.deepcopy(good_activations[-1]) if isinstance(good_activations[-1], list) else good_activations[-1]
344
344
 
345
345
 
346
346
  ### ENE IS APPLIED ACCORDING TO THE SPECIFIED POLICY, STRATEGY, AND PROBABILITY CONFIGURATION:
@@ -354,17 +354,17 @@ def evolver(weights,
354
354
  epsilon = np.finfo(float).eps
355
355
 
356
356
  child_W = np.copy(bad_weights)
357
- child_act = bad_activations.copy()
357
+ child_act = copy.deepcopy(bad_activations)
358
358
 
359
359
  mutated_W = np.copy(bad_weights)
360
- mutated_act = bad_activations.copy()
360
+ mutated_act = copy.deepcopy(bad_activations)
361
361
 
362
362
 
363
363
  for i in range(len(bad_weights)):
364
364
 
365
365
  if policy == 'aggressive':
366
366
  first_parent_W = np.copy(best_weight)
367
- first_parent_act = best_activations
367
+ first_parent_act = copy.deepcopy(best_activations)
368
368
  first_parent_fitness = best_fitness
369
369
 
370
370
  elif policy == 'explorer':
pyerualjetwork/cpu/nn.py CHANGED
@@ -295,15 +295,14 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
295
295
 
296
296
  weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), neurons=neurons_copy, activation_functions=activation_functions, population_size=pop_size, dtype=dtype)
297
297
 
298
- # 0 indexed individual will keep PLAN's learned informations and in later generations it will share other individuals.
299
- for l in range(1, len(weight_pop[0])):
300
- original_shape = weight_pop[0][l].shape
298
+ # 0 indexed individual will keep PLAN's learned informations and in later generations it will share with other individuals.
299
+ for layer in range(1, len(mlp_W)):
300
+ row_shape, col_shape = mlp_W[layer].shape
301
301
 
302
- identity_matrix = np.eye(original_shape[0], original_shape[1], dtype=weight_pop[0][l].dtype)
303
- weight_pop[0][l] = identity_matrix
304
-
305
- for l in range(len(weight_pop)):
306
- weight_pop[l][0] = np.copy(best_weight)
302
+ identity_matrix = np.eye(row_shape, col_shape)
303
+ mlp_W[layer] = identity_matrix
304
+
305
+ mlp_W[0] = plan_W
307
306
 
308
307
  best_weight = np.array(weight_pop[0], dtype=object)
309
308
  final_activations = act_pop[0]
@@ -157,7 +157,7 @@ def evolver(weights,
157
157
  what_gen (int): The current generation number, used for informational purposes or logging.
158
158
 
159
159
  fitness (cupy.ndarray): A 1D array containing the fitness values of each genome.
160
- The array is used to rank the genomes based on their performance. PLANEAT maximizes or minimizes this fitness based on the `target_fitness` parameter.
160
+ The array is used to rank the genomes based on their performance. ENE maximizes or minimizes this fitness based on the `target_fitness` parameter.
161
161
 
162
162
  weight_evolve (bool, optional): Are weights to be evolves or just activation combinations Default: True. Note: Regardless of whether this parameter is True or False, you must give the evolver function a list of weights equal to the number of activation potentiations. You can create completely random weights if you want. If this parameter is False, the weights entering the evolver function and the resulting weights will be exactly the same.
163
163
 
@@ -349,10 +349,10 @@ def evolver(weights,
349
349
 
350
350
  good_activations = list(activations[slice_center:])
351
351
  bad_activations = list(activations[:slice_center])
352
- best_activations = good_activations[-1].copy() if isinstance(good_activations[-1], list) else good_activations[-1]
352
+ best_activations = copy.deepcopy(good_activations[-1]) if isinstance(good_activations[-1], list) else good_activations[-1]
353
353
 
354
354
 
355
- ### PLANEAT IS APPLIED ACCORDING TO THE SPECIFIED POLICY, STRATEGY, AND PROBABILITY CONFIGURATION:
355
+ ### ENE IS APPLIED ACCORDING TO THE SPECIFIED POLICY, STRATEGY, AND PROBABILITY CONFIGURATION:
356
356
 
357
357
  bar_format = loading_bars()[0]
358
358
 
@@ -363,10 +363,10 @@ def evolver(weights,
363
363
  epsilon = cp.finfo(float).eps
364
364
 
365
365
  child_W = cp.copy(bad_weights)
366
- child_act = bad_activations.copy()
366
+ child_act = copy.deepcopy(bad_activations)
367
367
 
368
368
  mutated_W = cp.copy(bad_weights)
369
- mutated_act = bad_activations.copy()
369
+ mutated_act = copy.deepcopy(bad_activations)
370
370
 
371
371
 
372
372
  for i in range(len(bad_weights)):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5.32
3
+ Version: 5.33b0
4
4
  Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=X-alwoq6f9sVQjlVKzJMev51yAFgX4qoqSKrMGEd2b8,2704
1
+ pyerualjetwork/__init__.py,sha256=GHbTLIkgXXlQ-z0DeZnxv3lNN-0uXA9M1974xvgM_wk,2706
2
2
  pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
3
3
  pyerualjetwork/help.py,sha256=Nyi0gHAN9ZnO4wgQLeENt0n7tSCZ3hJmjaJ853eGjCE,831
4
4
  pyerualjetwork/issue_solver.py,sha256=3pZTGotS29sy3pIuGQoJFUePibtSzS-tNoU80T_Usgk,3131
@@ -7,22 +7,22 @@ pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
7
7
  pyerualjetwork/cpu/__init__.py,sha256=0yAYner_-v7SmT3P7JV2itU8xJUQdQpb40dhAMQiZkc,829
8
8
  pyerualjetwork/cpu/activation_functions.py,sha256=zZSoOQ452Ykp_RsHVxklxesJmmFgufyIB4F3WQjudEQ,6689
9
9
  pyerualjetwork/cpu/data_ops.py,sha256=5biKr7pqLbJOayHYgGdQV1K5GqKbcOvrbbuAyByuDC8,16154
10
- pyerualjetwork/cpu/ene.py,sha256=ZLCaCxkpAmFLdxDS2OH-S8fT4jKq4HNVCHgpIufb8lg,44322
10
+ pyerualjetwork/cpu/ene.py,sha256=-OOqol5sbmwv4Cd_I7MeXztXF_v3dA-qwYdlR9P9U5A,44357
11
11
  pyerualjetwork/cpu/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
12
12
  pyerualjetwork/cpu/metrics.py,sha256=WhZ8iEqWehaygPRADUlhA5j_Qv3UwqV_eMxpyRVkeVs,6070
13
13
  pyerualjetwork/cpu/model_ops.py,sha256=sWsP_7Gfa8_DJ2X7AUrOkeXnz2Eej6573grQQ3CooXM,20295
14
- pyerualjetwork/cpu/nn.py,sha256=B8V32y0j4a85JBz11Ke_hE8hUp8kv0gQ6LDtaCiASzk,32010
14
+ pyerualjetwork/cpu/nn.py,sha256=TYLXmVLbbfFCDFA_cH9TSMxgjauDi6d7xfrPzOx6Xwg,31867
15
15
  pyerualjetwork/cpu/visualizations.py,sha256=rOQsc-W8b71z7ovXSoF49lx4fmpvlaHLsyj9ejWnhnI,28164
16
16
  pyerualjetwork/cuda/__init__.py,sha256=NbqvAS4jlMdoFdXa5_hi5ukXQ5zAZR_5BQ4QAqtiKug,879
17
17
  pyerualjetwork/cuda/activation_functions.py,sha256=FmoSAxDr9SGO4nkE6ZflXK4pmvZ0sL3Epe1Lz-3GOVI,6766
18
18
  pyerualjetwork/cuda/data_ops.py,sha256=SiNodFNmWyTPY_KnKuAi9biPRdpTAYY3XM01bRSUPCs,18510
19
- pyerualjetwork/cuda/ene.py,sha256=aSCPr9VFdgK2cxxfwuP7z0jbJL9gkKNM0rgu8ihLarQ,44830
19
+ pyerualjetwork/cuda/ene.py,sha256=o5W8mZ6FUA2Xd09GWA_dzr0hfWx2EdsMaqihMipE2Ow,44846
20
20
  pyerualjetwork/cuda/loss_functions.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
21
21
  pyerualjetwork/cuda/metrics.py,sha256=PjDBoRvr6va8vRvDIJJGBO4-I4uumrk3NCM1Vz4NJTo,5054
22
22
  pyerualjetwork/cuda/model_ops.py,sha256=iQPuxmthKxP2GTFLHJppxoU64C6mEpkDW-DsfwFGiuY,21020
23
23
  pyerualjetwork/cuda/nn.py,sha256=7rbaIEcmssaFgcionWVRmKijlgFyftVjf-MMNaLO_28,33140
24
24
  pyerualjetwork/cuda/visualizations.py,sha256=9l5BhXqXoeopdhLvVGvjH1TKYZb9JdKOsSE2IYD02zs,28569
25
- pyerualjetwork-5.32.dist-info/METADATA,sha256=1wsSwMOifBtpBpAZE3UnFKdK8P4Bq3DUX8N_sdi-Pe4,8020
26
- pyerualjetwork-5.32.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
27
- pyerualjetwork-5.32.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
28
- pyerualjetwork-5.32.dist-info/RECORD,,
25
+ pyerualjetwork-5.33b0.dist-info/METADATA,sha256=ejryEVEMNyjOJ6gN8J9rCwl1uBszwXpav-nVi0zQmHw,8022
26
+ pyerualjetwork-5.33b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
27
+ pyerualjetwork-5.33b0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
28
+ pyerualjetwork-5.33b0.dist-info/RECORD,,