pyerualjetwork 5.32__py3-none-any.whl → 5.33b0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/cpu/ene.py +5 -5
- pyerualjetwork/cpu/nn.py +7 -8
- pyerualjetwork/cuda/ene.py +5 -5
- {pyerualjetwork-5.32.dist-info → pyerualjetwork-5.33b0.dist-info}/METADATA +1 -1
- {pyerualjetwork-5.32.dist-info → pyerualjetwork-5.33b0.dist-info}/RECORD +8 -8
- {pyerualjetwork-5.32.dist-info → pyerualjetwork-5.33b0.dist-info}/WHEEL +0 -0
- {pyerualjetwork-5.32.dist-info → pyerualjetwork-5.33b0.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
|
|
42
42
|
- Contact: tchasancan@gmail.com
|
43
43
|
"""
|
44
44
|
|
45
|
-
__version__ = "5.
|
45
|
+
__version__ = "5.33b0"
|
46
46
|
__update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
|
47
47
|
* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
|
48
48
|
* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
pyerualjetwork/cpu/ene.py
CHANGED
@@ -157,7 +157,7 @@ def evolver(weights,
|
|
157
157
|
what_gen (int): The current generation number, used for informational purposes or logging.
|
158
158
|
|
159
159
|
fitness (numpy.ndarray): A 1D array containing the fitness values of each genome.
|
160
|
-
The array is used to rank the genomes based on their performance.
|
160
|
+
The array is used to rank the genomes based on their performance. ENE maximizes or minimizes this fitness based on the `target_fitness` parameter.
|
161
161
|
|
162
162
|
weight_evolve (bool, optional): Are weights to be evolves or just activation combinations Default: True. Note: Regardless of whether this parameter is True or False, you must give the evolver function a list of weights equal to the number of activation potentiations. You can create completely random weights if you want. If this parameter is False, the weights entering the evolver function and the resulting weights will be exactly the same.
|
163
163
|
|
@@ -340,7 +340,7 @@ def evolver(weights,
|
|
340
340
|
|
341
341
|
good_activations = list(activations[slice_center:])
|
342
342
|
bad_activations = list(activations[:slice_center])
|
343
|
-
best_activations = good_activations[-1]
|
343
|
+
best_activations = copy.deepcopy(good_activations[-1]) if isinstance(good_activations[-1], list) else good_activations[-1]
|
344
344
|
|
345
345
|
|
346
346
|
### ENE IS APPLIED ACCORDING TO THE SPECIFIED POLICY, STRATEGY, AND PROBABILITY CONFIGURATION:
|
@@ -354,17 +354,17 @@ def evolver(weights,
|
|
354
354
|
epsilon = np.finfo(float).eps
|
355
355
|
|
356
356
|
child_W = np.copy(bad_weights)
|
357
|
-
child_act =
|
357
|
+
child_act = copy.deepcopy(bad_activations)
|
358
358
|
|
359
359
|
mutated_W = np.copy(bad_weights)
|
360
|
-
mutated_act =
|
360
|
+
mutated_act = copy.deepcopy(bad_activations)
|
361
361
|
|
362
362
|
|
363
363
|
for i in range(len(bad_weights)):
|
364
364
|
|
365
365
|
if policy == 'aggressive':
|
366
366
|
first_parent_W = np.copy(best_weight)
|
367
|
-
first_parent_act = best_activations
|
367
|
+
first_parent_act = copy.deepcopy(best_activations)
|
368
368
|
first_parent_fitness = best_fitness
|
369
369
|
|
370
370
|
elif policy == 'explorer':
|
pyerualjetwork/cpu/nn.py
CHANGED
@@ -295,15 +295,14 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
|
|
295
295
|
|
296
296
|
weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), neurons=neurons_copy, activation_functions=activation_functions, population_size=pop_size, dtype=dtype)
|
297
297
|
|
298
|
-
# 0 indexed individual will keep PLAN's learned informations and in later generations it will share other individuals.
|
299
|
-
for
|
300
|
-
|
298
|
+
# 0 indexed individual will keep PLAN's learned informations and in later generations it will share with other individuals.
|
299
|
+
for layer in range(1, len(mlp_W)):
|
300
|
+
row_shape, col_shape = mlp_W[layer].shape
|
301
301
|
|
302
|
-
identity_matrix = np.eye(
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
weight_pop[l][0] = np.copy(best_weight)
|
302
|
+
identity_matrix = np.eye(row_shape, col_shape)
|
303
|
+
mlp_W[layer] = identity_matrix
|
304
|
+
|
305
|
+
mlp_W[0] = plan_W
|
307
306
|
|
308
307
|
best_weight = np.array(weight_pop[0], dtype=object)
|
309
308
|
final_activations = act_pop[0]
|
pyerualjetwork/cuda/ene.py
CHANGED
@@ -157,7 +157,7 @@ def evolver(weights,
|
|
157
157
|
what_gen (int): The current generation number, used for informational purposes or logging.
|
158
158
|
|
159
159
|
fitness (cupy.ndarray): A 1D array containing the fitness values of each genome.
|
160
|
-
The array is used to rank the genomes based on their performance.
|
160
|
+
The array is used to rank the genomes based on their performance. ENE maximizes or minimizes this fitness based on the `target_fitness` parameter.
|
161
161
|
|
162
162
|
weight_evolve (bool, optional): Are weights to be evolves or just activation combinations Default: True. Note: Regardless of whether this parameter is True or False, you must give the evolver function a list of weights equal to the number of activation potentiations. You can create completely random weights if you want. If this parameter is False, the weights entering the evolver function and the resulting weights will be exactly the same.
|
163
163
|
|
@@ -349,10 +349,10 @@ def evolver(weights,
|
|
349
349
|
|
350
350
|
good_activations = list(activations[slice_center:])
|
351
351
|
bad_activations = list(activations[:slice_center])
|
352
|
-
best_activations = good_activations[-1]
|
352
|
+
best_activations = copy.deepcopy(good_activations[-1]) if isinstance(good_activations[-1], list) else good_activations[-1]
|
353
353
|
|
354
354
|
|
355
|
-
###
|
355
|
+
### ENE IS APPLIED ACCORDING TO THE SPECIFIED POLICY, STRATEGY, AND PROBABILITY CONFIGURATION:
|
356
356
|
|
357
357
|
bar_format = loading_bars()[0]
|
358
358
|
|
@@ -363,10 +363,10 @@ def evolver(weights,
|
|
363
363
|
epsilon = cp.finfo(float).eps
|
364
364
|
|
365
365
|
child_W = cp.copy(bad_weights)
|
366
|
-
child_act =
|
366
|
+
child_act = copy.deepcopy(bad_activations)
|
367
367
|
|
368
368
|
mutated_W = cp.copy(bad_weights)
|
369
|
-
mutated_act =
|
369
|
+
mutated_act = copy.deepcopy(bad_activations)
|
370
370
|
|
371
371
|
|
372
372
|
for i in range(len(bad_weights)):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 5.
|
3
|
+
Version: 5.33b0
|
4
4
|
Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=GHbTLIkgXXlQ-z0DeZnxv3lNN-0uXA9M1974xvgM_wk,2706
|
2
2
|
pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
|
3
3
|
pyerualjetwork/help.py,sha256=Nyi0gHAN9ZnO4wgQLeENt0n7tSCZ3hJmjaJ853eGjCE,831
|
4
4
|
pyerualjetwork/issue_solver.py,sha256=3pZTGotS29sy3pIuGQoJFUePibtSzS-tNoU80T_Usgk,3131
|
@@ -7,22 +7,22 @@ pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
|
7
7
|
pyerualjetwork/cpu/__init__.py,sha256=0yAYner_-v7SmT3P7JV2itU8xJUQdQpb40dhAMQiZkc,829
|
8
8
|
pyerualjetwork/cpu/activation_functions.py,sha256=zZSoOQ452Ykp_RsHVxklxesJmmFgufyIB4F3WQjudEQ,6689
|
9
9
|
pyerualjetwork/cpu/data_ops.py,sha256=5biKr7pqLbJOayHYgGdQV1K5GqKbcOvrbbuAyByuDC8,16154
|
10
|
-
pyerualjetwork/cpu/ene.py,sha256
|
10
|
+
pyerualjetwork/cpu/ene.py,sha256=-OOqol5sbmwv4Cd_I7MeXztXF_v3dA-qwYdlR9P9U5A,44357
|
11
11
|
pyerualjetwork/cpu/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
12
12
|
pyerualjetwork/cpu/metrics.py,sha256=WhZ8iEqWehaygPRADUlhA5j_Qv3UwqV_eMxpyRVkeVs,6070
|
13
13
|
pyerualjetwork/cpu/model_ops.py,sha256=sWsP_7Gfa8_DJ2X7AUrOkeXnz2Eej6573grQQ3CooXM,20295
|
14
|
-
pyerualjetwork/cpu/nn.py,sha256=
|
14
|
+
pyerualjetwork/cpu/nn.py,sha256=TYLXmVLbbfFCDFA_cH9TSMxgjauDi6d7xfrPzOx6Xwg,31867
|
15
15
|
pyerualjetwork/cpu/visualizations.py,sha256=rOQsc-W8b71z7ovXSoF49lx4fmpvlaHLsyj9ejWnhnI,28164
|
16
16
|
pyerualjetwork/cuda/__init__.py,sha256=NbqvAS4jlMdoFdXa5_hi5ukXQ5zAZR_5BQ4QAqtiKug,879
|
17
17
|
pyerualjetwork/cuda/activation_functions.py,sha256=FmoSAxDr9SGO4nkE6ZflXK4pmvZ0sL3Epe1Lz-3GOVI,6766
|
18
18
|
pyerualjetwork/cuda/data_ops.py,sha256=SiNodFNmWyTPY_KnKuAi9biPRdpTAYY3XM01bRSUPCs,18510
|
19
|
-
pyerualjetwork/cuda/ene.py,sha256=
|
19
|
+
pyerualjetwork/cuda/ene.py,sha256=o5W8mZ6FUA2Xd09GWA_dzr0hfWx2EdsMaqihMipE2Ow,44846
|
20
20
|
pyerualjetwork/cuda/loss_functions.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
21
21
|
pyerualjetwork/cuda/metrics.py,sha256=PjDBoRvr6va8vRvDIJJGBO4-I4uumrk3NCM1Vz4NJTo,5054
|
22
22
|
pyerualjetwork/cuda/model_ops.py,sha256=iQPuxmthKxP2GTFLHJppxoU64C6mEpkDW-DsfwFGiuY,21020
|
23
23
|
pyerualjetwork/cuda/nn.py,sha256=7rbaIEcmssaFgcionWVRmKijlgFyftVjf-MMNaLO_28,33140
|
24
24
|
pyerualjetwork/cuda/visualizations.py,sha256=9l5BhXqXoeopdhLvVGvjH1TKYZb9JdKOsSE2IYD02zs,28569
|
25
|
-
pyerualjetwork-5.
|
26
|
-
pyerualjetwork-5.
|
27
|
-
pyerualjetwork-5.
|
28
|
-
pyerualjetwork-5.
|
25
|
+
pyerualjetwork-5.33b0.dist-info/METADATA,sha256=ejryEVEMNyjOJ6gN8J9rCwl1uBszwXpav-nVi0zQmHw,8022
|
26
|
+
pyerualjetwork-5.33b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
27
|
+
pyerualjetwork-5.33b0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
28
|
+
pyerualjetwork-5.33b0.dist-info/RECORD,,
|
File without changes
|
File without changes
|