pyerualjetwork 5.28a0__py3-none-any.whl → 5.31__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (27) hide show
  1. pyerualjetwork/__init__.py +10 -10
  2. pyerualjetwork/cpu/__init__.py +27 -0
  3. pyerualjetwork/{activation_functions_cpu.py → cpu/activation_functions.py} +39 -2
  4. pyerualjetwork/{data_operations_cpu.py → cpu/data_ops.py} +8 -8
  5. pyerualjetwork/{ene_cpu.py → cpu/ene.py} +4 -4
  6. pyerualjetwork/{metrics_cpu.py → cpu/metrics.py} +1 -1
  7. pyerualjetwork/{model_operations_cpu.py → cpu/model_ops.py} +9 -9
  8. pyerualjetwork/{neu_cpu.py → cpu/nn.py} +25 -14
  9. pyerualjetwork/{visualizations_cpu.py → cpu/visualizations.py} +11 -11
  10. pyerualjetwork/cuda/__init__.py +27 -0
  11. pyerualjetwork/{activation_functions_cuda.py → cuda/activation_functions.py} +39 -0
  12. pyerualjetwork/{data_operations_cuda.py → cuda/data_ops.py} +9 -9
  13. pyerualjetwork/{ene_cuda.py → cuda/ene.py} +4 -4
  14. pyerualjetwork/{metrics_cuda.py → cuda/metrics.py} +1 -1
  15. pyerualjetwork/{model_operations_cuda.py → cuda/model_ops.py} +9 -9
  16. pyerualjetwork/{neu_cuda.py → cuda/nn.py} +27 -16
  17. pyerualjetwork/{visualizations_cuda.py → cuda/visualizations.py} +11 -11
  18. pyerualjetwork/help.py +5 -5
  19. pyerualjetwork/issue_solver.py +2 -2
  20. pyerualjetwork/{memory_operations.py → memory_ops.py} +1 -1
  21. {pyerualjetwork-5.28a0.dist-info → pyerualjetwork-5.31.dist-info}/METADATA +11 -14
  22. pyerualjetwork-5.31.dist-info/RECORD +28 -0
  23. pyerualjetwork-5.28a0.dist-info/RECORD +0 -26
  24. /pyerualjetwork/{loss_functions_cpu.py → cpu/loss_functions.py} +0 -0
  25. /pyerualjetwork/{loss_functions_cuda.py → cuda/loss_functions.py} +0 -0
  26. {pyerualjetwork-5.28a0.dist-info → pyerualjetwork-5.31.dist-info}/WHEEL +0 -0
  27. {pyerualjetwork-5.28a0.dist-info → pyerualjetwork-5.31.dist-info}/top_level.txt +0 -0
@@ -11,17 +11,17 @@ training, and both detailed and simplified memory management.
11
11
 
12
12
  Library (CPU) Main Modules:
13
13
  ---------------------------
14
- - neu_cpu
15
- - ene_cpu
16
- - data_operations_cpu
17
- - model_operations_cpu
14
+ - cpu.nn
15
+ - cpu.ene
16
+ - cpu.data_ops
17
+ - cpu.model_ops
18
18
 
19
19
  Library (GPU) Main Modules:
20
20
  ---------------------------
21
- - neu_cuda
22
- - ene_cuda
23
- - data_operations_cuda
24
- - model_operations_cuda
21
+ - cuda.nn
22
+ - cuda.ene
23
+ - cuda.data_ops
24
+ - cuda.model_ops
25
25
 
26
26
  Memory Module:
27
27
  --------------
@@ -35,14 +35,14 @@ Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJe
35
35
 
36
36
  PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
37
37
 
38
- - Author: Hasan Can Beydili
38
+ - Creator: Hasan Can Beydili
39
39
  - YouTube: https://www.youtube.com/@HasanCanBeydili
40
40
  - Linkedin: https://www.linkedin.com/in/hasan-can-beydili-77a1b9270/
41
41
  - Instagram: https://www.instagram.com/canbeydilj
42
42
  - Contact: tchasancan@gmail.com
43
43
  """
44
44
 
45
- __version__ = "5.28a0"
45
+ __version__ = "5.31"
46
46
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
47
47
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
48
48
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
@@ -0,0 +1,27 @@
1
+ """
2
+ CPU
3
+ ===
4
+ The modules contained in this folder and their functions compute data on the central processing unit and store it in the CPU's RAM..
5
+
6
+ Modules in the folder:
7
+ ----------------------
8
+ - activation_functions
9
+ - data_operations
10
+ - ene
11
+ - loss_functions
12
+ - metrics
13
+ - model_operations
14
+ - nn
15
+ - visualizations
16
+
17
+ Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
18
+
19
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
20
+
21
+ - Creator: Hasan Can Beydili
22
+ - YouTube: https://www.youtube.com/@HasanCanBeydili
23
+ - Linkedin: https://www.linkedin.com/in/hasan-can-beydili-77a1b9270/
24
+ - Instagram: https://www.instagram.com/canbeydilj
25
+ - Contact: tchasancan@gmail.com
26
+
27
+ """
@@ -1,8 +1,46 @@
1
+ """
2
+
3
+ Activation Functions on CPU
4
+ ===========================
5
+ This module contains activation functions that run on the CPU.
6
+
7
+
8
+ Module functions:
9
+ -----------------
10
+ - 'sigmoid': Sigmoid,
11
+ - 'mod_circular': modular_circular_activation,
12
+ - 'tanh_circular': tanh_circular_activation,
13
+ - 'leaky_relu': leaky_relu,
14
+ - 'relu': Relu,
15
+ - 'gelu': gelu,
16
+ - 'tanh': tanh,
17
+ - 'sinakt': sinakt,
18
+ - 'p_squared': p_squared,
19
+ - 'sglu': lambda x: sglu(x, alpha=1.0),
20
+ - 'dlrelu': dlrelu,
21
+ - 'sin_plus': sin_plus,
22
+ - 'acos': lambda x: acos(x, alpha=1.0, beta=0.0),
23
+ - 'isra': isra,
24
+ - 'waveakt': waveakt,
25
+ - 'arctan': arctan,
26
+ - 'bent_identity': bent_identity,
27
+ - 'softsign': softsign,
28
+ - 'pwl': pwl,
29
+ - 'sine': sine,
30
+ - 'tanh_square': tanh_square,
31
+ - 'linear':,
32
+ - 'sine_square': sine_square,
33
+ - 'logarithmic': logarithmic,
34
+ - 'sine_offset': lambda x: sine_offset(x, 1.0),
35
+ - 'spiral': spiral_activation,
36
+ - 'circular': circular_activation
37
+ - Softmax()
38
+ """
39
+
1
40
  import numpy as np
2
41
  from scipy.special import expit, softmax
3
42
  import warnings
4
43
 
5
-
6
44
  # ACTIVATION FUNCTIONS -----
7
45
 
8
46
  def all_activations():
@@ -71,7 +109,6 @@ def Relu(
71
109
 
72
110
  return np.maximum(0, x)
73
111
 
74
-
75
112
  def tanh(x):
76
113
  return np.tanh(x)
77
114
 
@@ -21,7 +21,7 @@ Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJe
21
21
 
22
22
  PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
23
23
 
24
- - Author: Hasan Can Beydili
24
+ - Creator: Hasan Can Beydili
25
25
  - YouTube: https://www.youtube.com/@HasanCanBeydili
26
26
  - Linkedin: https://www.linkedin.com/in/hasan-can-beydili-77a1b9270/
27
27
  - Instagram: https://www.instagram.com/canbeydilj
@@ -46,7 +46,7 @@ def encode_one_hot(y_train, y_test=None, summary=False):
46
46
  Returns:
47
47
  tuple: One-hot encoded y_train and (if given) y_test.
48
48
  """
49
- from .memory_operations import optimize_labels
49
+ from ..memory_ops import optimize_labels
50
50
 
51
51
  classes = np.unique(y_train)
52
52
  class_count = len(classes)
@@ -154,8 +154,8 @@ def manuel_balancer(x_train, y_train, target_samples_per_class, dtype=np.float32
154
154
  x_balanced -- Balanced input dataset (numpy array format)
155
155
  y_balanced -- Balanced class labels (one-hot encoded, numpy array format)
156
156
  """
157
- from .ui import loading_bars, get_loading_bar_style
158
- from .memory_operations import transfer_to_cpu
157
+ from ..ui import loading_bars, get_loading_bar_style
158
+ from ..memory_ops import transfer_to_cpu
159
159
 
160
160
  x_train = transfer_to_cpu(x_train, dtype=dtype)
161
161
 
@@ -229,8 +229,8 @@ def auto_balancer(x_train, y_train, dtype=np.float32):
229
229
  Returns:
230
230
  tuple: A tuple containing balanced input data and labels.
231
231
  """
232
- from .ui import loading_bars, get_loading_bar_style
233
- from .memory_operations import transfer_to_cpu
232
+ from ..ui import loading_bars, get_loading_bar_style
233
+ from ..memory_ops import transfer_to_cpu
234
234
 
235
235
  x_train = transfer_to_cpu(x_train, dtype=dtype)
236
236
 
@@ -295,8 +295,8 @@ def synthetic_augmentation(x, y, dtype=np.float32):
295
295
  Returns:
296
296
  x_train_balanced, y_train_balanced (numpy array format)
297
297
  """
298
- from .ui import loading_bars, get_loading_bar_style
299
- from .memory_operations import transfer_to_cpu
298
+ from ..ui import loading_bars, get_loading_bar_style
299
+ from ..memory_ops import transfer_to_cpu
300
300
 
301
301
  x = transfer_to_cpu(x, dtype=dtype)
302
302
 
@@ -21,7 +21,7 @@ Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJe
21
21
 
22
22
  PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
23
23
 
24
- - Author: Hasan Can Beydili
24
+ - Creator: Hasan Can Beydili
25
25
  - YouTube: https://www.youtube.com/@HasanCanBeydili
26
26
  - Linkedin: https://www.linkedin.com/in/hasan-can-beydili-77a1b9270/
27
27
  - Instagram: https://www.instagram.com/canbeydilj
@@ -34,9 +34,9 @@ import math
34
34
  import copy
35
35
 
36
36
  ### LIBRARY IMPORTS ###
37
- from .data_operations_cpu import normalization, non_neg_normalization
38
- from .ui import loading_bars, initialize_loading_bar
39
- from .activation_functions_cpu import apply_activation, all_activations
37
+ from .data_ops import non_neg_normalization
38
+ from ..ui import loading_bars, initialize_loading_bar
39
+ from .activation_functions import apply_activation, all_activations
40
40
 
41
41
  def define_genomes(input_shape, output_shape, population_size, neurons=[], activation_functions=[], dtype=np.float32):
42
42
  """
@@ -13,7 +13,7 @@ def metrics(y_ts, test_preds, average='weighted'):
13
13
  tuple: Precision, recall, F1 score.
14
14
  """
15
15
 
16
- from .data_operations_cpu import decode_one_hot
16
+ from .data_ops import decode_one_hot
17
17
 
18
18
  y_test_d = decode_one_hot(y_ts)
19
19
  y_test_d = np.array(y_test_d)
@@ -38,7 +38,7 @@ Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJe
38
38
 
39
39
  PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
40
40
 
41
- - Author: Hasan Can Beydili
41
+ - Creator: Hasan Can Beydili
42
42
  - YouTube: https://www.youtube.com/@HasanCanBeydili
43
43
  - Linkedin: https://www.linkedin.com/in/hasan-can-beydili-77a1b9270/
44
44
  - Instagram: https://www.instagram.com/canbeydilj
@@ -62,7 +62,7 @@ def save_model(model_name,
62
62
  test_acc=None,
63
63
  model_path='',
64
64
  activations=['linear'],
65
- activation_potentiation=[],
65
+ activation_potentiation=None,
66
66
  weights_type='npy',
67
67
  weights_format='raw',
68
68
  show_architecture=False,
@@ -100,8 +100,8 @@ def save_model(model_name,
100
100
  No return.
101
101
  """
102
102
 
103
- from .visualizations_cpu import draw_model_architecture
104
- from .__init__ import __version__
103
+ from .visualizations import draw_model_architecture
104
+ from .. import __version__
105
105
 
106
106
  if model_type != 'PLAN' and model_type != 'MLP' and model_type != 'PTNN':
107
107
  raise ValueError("model_type parameter must be 'PLAN', 'MLP' or 'PTNN'.")
@@ -303,7 +303,7 @@ def load_model(model_name,
303
303
  lists: Weights, None, test_accuracy, activations, scaler_params, None, model_type, weight_type, weight_format, device_version, (list[df_elements])=Pandas DataFrame of the model
304
304
  """
305
305
 
306
- from .__init__ import __version__
306
+ from .. import __version__
307
307
 
308
308
  try:
309
309
 
@@ -395,8 +395,8 @@ def predict_from_storage(Input, model_name, model_path=''):
395
395
  ndarray: Output from the model.
396
396
  """
397
397
 
398
- from .activation_functions_cpu import apply_activation
399
- from .data_operations_cpu import standard_scaler
398
+ from .activation_functions import apply_activation
399
+ from .data_ops import standard_scaler
400
400
 
401
401
  try:
402
402
 
@@ -505,8 +505,8 @@ def predict_from_memory(Input, W, scaler_params=None, activations=['linear'], ac
505
505
  ndarray: Output from the model.
506
506
  """
507
507
 
508
- from .data_operations_cpu import standard_scaler
509
- from .activation_functions_cpu import apply_activation
508
+ from .data_ops import standard_scaler
509
+ from .activation_functions import apply_activation
510
510
 
511
511
  if model_type != 'PLAN' and model_type != 'MLP' and model_type != 'PTNN': raise ValueError("model_type parameter must be 'PLAN', 'MLP' or 'PTNN'.")
512
512
 
@@ -2,7 +2,7 @@
2
2
  """
3
3
 
4
4
 
5
- NEU (Neural Networks) on CPU
5
+ NN (Neural Networks) on CPU
6
6
  ============================
7
7
  This module hosts functions for training and evaluating artificial neural networks on CPU for labeled classification tasks (for now).
8
8
 
@@ -40,7 +40,7 @@ Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJe
40
40
 
41
41
  PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
42
42
 
43
- - Author: Hasan Can Beydili
43
+ - Creator: Hasan Can Beydili
44
44
  - YouTube: https://www.youtube.com/@HasanCanBeydili
45
45
  - Linkedin: https://www.linkedin.com/in/hasan-can-beydili-77a1b9270/
46
46
  - Instagram: https://www.instagram.com/canbeydilj
@@ -52,14 +52,14 @@ import copy
52
52
  import random
53
53
 
54
54
  ### LIBRARY IMPORTS ###
55
- from .ui import loading_bars, initialize_loading_bar
56
- from .data_operations_cpu import normalization, batcher
57
- from .activation_functions_cpu import apply_activation, all_activations
58
- from .model_operations_cpu import get_acc, get_preds_softmax
59
- from .memory_operations import optimize_labels
60
- from .loss_functions_cpu import categorical_crossentropy, binary_crossentropy
61
- from .fitness_functions import wals
62
- from .visualizations_cpu import (
55
+ from ..ui import loading_bars, initialize_loading_bar
56
+ from .data_ops import normalization, batcher
57
+ from .activation_functions import apply_activation, all_activations
58
+ from .model_ops import get_acc, get_preds_softmax
59
+ from ..memory_ops import optimize_labels
60
+ from .loss_functions import categorical_crossentropy, binary_crossentropy
61
+ from ..fitness_functions import wals
62
+ from .visualizations import (
63
63
  draw_neural_web,
64
64
  display_visualizations_for_learner,
65
65
  update_history_plots_for_learner,
@@ -132,18 +132,29 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
132
132
  * This function also able to train classic MLP model architectures.
133
133
  * And my newest innovative architecture: PTNN (Potentiation Transfer Neural Network).
134
134
 
135
+ Examples:
136
+
137
+ This creates a PLAN model:
138
+ - ```learn(x_train, y_train, optimizer, pop_size=100, gen=100, fit_start=True) ```
139
+
140
+ This creates a MLP model(with 2 hidden layer):
141
+ - ```learn(x_train, y_train, optimizer, pop_size=100, gen=100, fit_start=False, neurons=[64, 64], activation_functions=['tanh', 'tanh']) ```
142
+
143
+ This creates a PTNN model(with 2 hidden layer & 1 aggregation layer(comes with PLAN)):
144
+ - ```learn(x_train, y_train, optimizer, pop_size=100, gen=[10, 100], fit_start=True, neurons=[64, 64], activation_functions=['tanh', 'tanh']) ```
145
+
135
146
  :Args:
136
147
  :param x_train: (array-like): Training input data.
137
148
  :param y_train: (array-like): Labels for training data. one-hot encoded.
138
- :param optimizer: (function): Optimization technique with hyperparameters. (PLAN, MLP & PTNN (all) using ENE for optimization. Gradient based technique's will added in the future.) Please use this: from pyerualjetwork.ene_cpu import evolver (and) optimizer = lambda *args, **kwargs: evolver(*args, 'here give your hyperparameters for example: activation_add_prob=0.85', **kwargs) Example:
149
+ :param optimizer: (function): Optimization technique with hyperparameters. (PLAN, MLP & PTNN (all) using ENE for optimization. Gradient based technique's will added in the future.) Please use this: from pyerualjetwork.cpu.ene import evolver (and) optimizer = lambda *args, **kwargs: evolver(*args, 'here give your hyperparameters for example: activation_add_prob=0.85', **kwargs) Example:
139
150
  ```python
140
- optimizer = lambda *args, **kwargs: ene_cpu.evolver(*args,
151
+ optimizer = lambda *args, **kwargs: ene.evolver(*args,
141
152
  activation_add_prob=0.05,
142
153
  strategy='aggressive',
143
154
  policy='more_selective',
144
155
  **kwargs)
145
156
 
146
- model = neu_cpu.learn(x_train,
157
+ model = nn.learn(x_train,
147
158
  y_train,
148
159
  optimizer,
149
160
  fit_start=True,
@@ -179,7 +190,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
179
190
  tuple: A list for model parameters: [Weight matrix, Train Preds, Train Accuracy, [Activations functions]].
180
191
  """
181
192
 
182
- from .ene_cpu import define_genomes
193
+ from .ene import define_genomes
183
194
 
184
195
  data = 'Train'
185
196
 
@@ -86,7 +86,7 @@ def draw_model_architecture(model_name, model_path=''):
86
86
  Visualizes the architecture of a neural network model with multiple inputs based on activation functions.
87
87
  """
88
88
 
89
- from .model_operations_cpu import load_model, get_scaler, get_act, get_weights
89
+ from .model_ops import load_model, get_scaler, get_act, get_weights
90
90
 
91
91
  model = load_model(model_name=model_name, model_path=model_path)
92
92
 
@@ -182,7 +182,7 @@ def draw_model_architecture(model_name, model_path=''):
182
182
 
183
183
  def draw_activations(x_train, activation):
184
184
 
185
- from . import activation_functions_cpu as af
185
+ from . import activation_functions as af
186
186
 
187
187
  if activation == 'sigmoid':
188
188
  result = af.Sigmoid(x_train)
@@ -327,10 +327,10 @@ def draw_activations(x_train, activation):
327
327
 
328
328
  def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activations):
329
329
 
330
- from .metrics_cpu import metrics, confusion_matrix, roc_curve
331
- from .ui import loading_bars, initialize_loading_bar
332
- from .data_operations_cpu import decode_one_hot
333
- from .model_operations_cpu import predict_model_ram
330
+ from .metrics import metrics, confusion_matrix, roc_curve
331
+ from ..ui import loading_bars, initialize_loading_bar
332
+ from .data_ops import decode_one_hot
333
+ from .model_ops import predict_model_ram
334
334
 
335
335
  bar_format_normal = loading_bars()[0]
336
336
 
@@ -455,8 +455,8 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activations):
455
455
 
456
456
  def plot_decision_boundary(x, y, activations, W, artist=None, ax=None):
457
457
 
458
- from .model_operations_cpu import predict_model_ram
459
- from .data_operations_cpu import decode_one_hot
458
+ from .model_ops import predict_model_ram
459
+ from .data_ops import decode_one_hot
460
460
 
461
461
  feature_indices = [0, 1]
462
462
 
@@ -513,8 +513,8 @@ def plot_decision_boundary(x, y, activations, W, artist=None, ax=None):
513
513
 
514
514
  def plot_decision_space(x, y, y_preds=None, s=100, color='tab20'):
515
515
 
516
- from .metrics_cpu import pca
517
- from .data_operations_cpu import decode_one_hot
516
+ from .metrics import pca
517
+ from .data_ops import decode_one_hot
518
518
 
519
519
  if x.shape[1] > 2:
520
520
 
@@ -707,7 +707,7 @@ def show():
707
707
 
708
708
  def initialize_visualization_for_learner(show_history, neurons_history, neural_web_history, x_train, y_train):
709
709
 
710
- from .data_operations_cpu import find_closest_factors
710
+ from .data_ops import find_closest_factors
711
711
  viz_objects = {}
712
712
 
713
713
  if show_history:
@@ -0,0 +1,27 @@
1
+ """
2
+ CUDA
3
+ ====
4
+ The modules contained in this folder and their functions compute data on a graphics processing unit with CUDA technology and a installed CUDA toolkit, storing it in the GPU's VRAM.
5
+
6
+ Modules in the folder:
7
+ ----------------------
8
+ - activation_functions
9
+ - data_operations
10
+ - ene
11
+ - loss_functions
12
+ - metrics
13
+ - model_operations
14
+ - nn
15
+ - visualizations
16
+
17
+ Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
18
+
19
+ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
20
+
21
+ - Creator: Hasan Can Beydili
22
+ - YouTube: https://www.youtube.com/@HasanCanBeydili
23
+ - Linkedin: https://www.linkedin.com/in/hasan-can-beydili-77a1b9270/
24
+ - Instagram: https://www.instagram.com/canbeydilj
25
+ - Contact: tchasancan@gmail.com
26
+
27
+ """
@@ -1,3 +1,42 @@
1
+ """
2
+
3
+ Activation Functions on CUDA
4
+ ============================
5
+ This module contains activation functions that run on the CUDA GPU.
6
+
7
+
8
+ Module functions:
9
+ -----------------
10
+ - 'sigmoid': Sigmoid,
11
+ - 'mod_circular': modular_circular_activation,
12
+ - 'tanh_circular': tanh_circular_activation,
13
+ - 'leaky_relu': leaky_relu,
14
+ - 'relu': Relu,
15
+ - 'gelu': gelu,
16
+ - 'tanh': tanh,
17
+ - 'sinakt': sinakt,
18
+ - 'p_squared': p_squared,
19
+ - 'sglu': lambda x: sglu(x, alpha=1.0),
20
+ - 'dlrelu': dlrelu,
21
+ - 'sin_plus': sin_plus,
22
+ - 'acos': lambda x: acos(x, alpha=1.0, beta=0.0),
23
+ - 'isra': isra,
24
+ - 'waveakt': waveakt,
25
+ - 'arctan': arctan,
26
+ - 'bent_identity': bent_identity,
27
+ - 'softsign': softsign,
28
+ - 'pwl': pwl,
29
+ - 'sine': sine,
30
+ - 'tanh_square': tanh_square,
31
+ - 'linear':,
32
+ - 'sine_square': sine_square,
33
+ - 'logarithmic': logarithmic,
34
+ - 'sine_offset': lambda x: sine_offset(x, 1.0),
35
+ - 'spiral': spiral_activation,
36
+ - 'circular': circular_activation
37
+ - Softmax()
38
+ """
39
+
1
40
  import cupy as cp
2
41
  import numpy as np
3
42
  from scipy.special import expit, softmax
@@ -21,7 +21,7 @@ Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJe
21
21
 
22
22
  PyerualJetwork document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
23
23
 
24
- - Author: Hasan Can Beydili
24
+ - Creator: Hasan Can Beydili
25
25
  - YouTube: https://www.youtube.com/@HasanCanBeydili
26
26
  - Linkedin: https://www.linkedin.com/in/hasan-can-beydili-77a1b9270/
27
27
  - Instagram: https://www.instagram.com/canbeydilj
@@ -47,7 +47,7 @@ def encode_one_hot(y_train, y_test=None, summary=False):
47
47
  tuple: One-hot encoded y_train and (if given: y_test).
48
48
  """
49
49
 
50
- from .memory_operations import optimize_labels, transfer_to_cpu
50
+ from ..memory_ops import optimize_labels, transfer_to_cpu
51
51
 
52
52
  y_train = transfer_to_cpu(y_train,dtype=y_train.dtype)
53
53
  y_test = transfer_to_cpu(y_test,dtype=y_test.dtype)
@@ -113,7 +113,7 @@ def split(X, y, test_size, random_state=42, dtype=cp.float32, shuffle_in_cpu=Fal
113
113
  Returns:
114
114
  tuple: x_train, x_test, y_train, y_test as ordered training and testing data subsets.
115
115
  """
116
- from .memory_operations import transfer_to_gpu, optimize_labels
116
+ from ..memory_ops import transfer_to_gpu, optimize_labels
117
117
 
118
118
  X = transfer_to_gpu(X, dtype=dtype)
119
119
  y = optimize_labels(y, one_hot_encoded=False, cuda=True)
@@ -172,8 +172,8 @@ def manuel_balancer(x_train, y_train, target_samples_per_class, dtype=cp.float32
172
172
  x_balanced -- Balanced input dataset (cupy array format)
173
173
  y_balanced -- Balanced class labels (one-hot encoded, cupy array format)
174
174
  """
175
- from .ui import loading_bars, get_loading_bar_style
176
- from .memory_operations import transfer_to_gpu
175
+ from ..ui import loading_bars, get_loading_bar_style
176
+ from ..memory_ops import transfer_to_gpu
177
177
 
178
178
  bar_format = loading_bars()[0]
179
179
  x_train = transfer_to_gpu(x_train, dtype=dtype)
@@ -261,8 +261,8 @@ def auto_balancer(x_train, y_train, dtype=cp.float32, shuffle_in_cpu=False):
261
261
  tuple: A tuple containing balanced input data and labels.
262
262
  """
263
263
 
264
- from .ui import loading_bars, get_loading_bar_style
265
- from .memory_operations import transfer_to_gpu
264
+ from ..ui import loading_bars, get_loading_bar_style
265
+ from ..memory_ops import transfer_to_gpu
266
266
 
267
267
  x_train = transfer_to_gpu(x_train, dtype=dtype)
268
268
  y_train = transfer_to_gpu(y_train, dtype=y_train.dtype)
@@ -331,8 +331,8 @@ def synthetic_augmentation(x_train, y_train, dtype=cp.float32, shuffle_in_cpu=Fa
331
331
  Returns:
332
332
  x_train_balanced, y_train_balanced (cupy array format)
333
333
  """
334
- from .ui import loading_bars, get_loading_bar_style
335
- from .memory_operations import transfer_to_gpu
334
+ from ..ui import loading_bars, get_loading_bar_style
335
+ from ..memory_ops import transfer_to_gpu
336
336
 
337
337
  x = transfer_to_gpu(x_train, dtype=dtype)
338
338
  y = transfer_to_gpu(y_train, dtype=y_train.dtype)
@@ -21,7 +21,7 @@ Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJe
21
21
 
22
22
  PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
23
23
 
24
- - Author: Hasan Can Beydili
24
+ - Creator: Hasan Can Beydili
25
25
  - YouTube: https://www.youtube.com/@HasanCanBeydili
26
26
  - Linkedin: https://www.linkedin.com/in/hasan-can-beydili-77a1b9270/
27
27
  - Instagram: https://www.instagram.com/canbeydilj
@@ -35,9 +35,9 @@ import math
35
35
  import copy
36
36
 
37
37
  ### LIBRARY IMPORTS ###
38
- from .data_operations_cuda import normalization, non_neg_normalization
39
- from .ui import loading_bars, initialize_loading_bar
40
- from .activation_functions_cuda import apply_activation, all_activations
38
+ from .data_ops import non_neg_normalization
39
+ from ..ui import loading_bars, initialize_loading_bar
40
+ from .activation_functions import apply_activation, all_activations
41
41
 
42
42
  def define_genomes(input_shape, output_shape, population_size, neurons=[], activation_functions=[], dtype=cp.float32):
43
43
  """
@@ -1,7 +1,7 @@
1
1
  import cupy as cp
2
2
 
3
3
  def metrics(y_ts, test_preds, average='weighted'):
4
- from .data_operations_cpu import decode_one_hot
4
+ from .data_ops import decode_one_hot
5
5
  y_test_d = cp.array(decode_one_hot(y_ts))
6
6
  y_pred = cp.array(test_preds)
7
7
 
@@ -39,7 +39,7 @@ Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJe
39
39
 
40
40
  PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
41
41
 
42
- - Author: Hasan Can Beydili
42
+ - Creator: Hasan Can Beydili
43
43
  - YouTube: https://www.youtube.com/@HasanCanBeydili
44
44
  - Linkedin: https://www.linkedin.com/in/hasan-can-beydili-77a1b9270/
45
45
  - Instagram: https://www.instagram.com/canbeydilj
@@ -64,7 +64,7 @@ def save_model(model_name,
64
64
  test_acc=None,
65
65
  model_path='',
66
66
  activations=['linear'],
67
- activation_potentiation=[],
67
+ activation_potentiation=None,
68
68
  weights_type='npy',
69
69
  weights_format='raw',
70
70
  show_architecture=False,
@@ -105,8 +105,8 @@ def save_model(model_name,
105
105
  No return.
106
106
  """
107
107
 
108
- from .visualizations_cuda import draw_model_architecture
109
- from .__init__ import __version__
108
+ from .visualizations import draw_model_architecture
109
+ from .. import __version__
110
110
 
111
111
  if model_type != 'PLAN' and model_type != 'MLP' and model_type != 'PTNN':
112
112
  raise ValueError("model_type parameter must be 'PLAN', 'MLP' or 'PTNN'.")
@@ -316,7 +316,7 @@ def load_model(model_name,
316
316
  lists: Weights, None, test_accuracy, activations, scaler_params, None, model_type, weight_type, weight_format, device_version, (list[df_elements])=Pandas DataFrame of the model
317
317
  """
318
318
 
319
- from .__init__ import __version__
319
+ from .. import __version__
320
320
 
321
321
  try:
322
322
 
@@ -419,8 +419,8 @@ def predict_from_storage(Input, model_name, model_path='', dtype=cp.float32):
419
419
 
420
420
  Input = cp.array(Input, dtype=dtype, copy=False)
421
421
 
422
- from .activation_functions_cuda import apply_activation
423
- from .data_operations_cuda import standard_scaler
422
+ from .activation_functions import apply_activation
423
+ from .data_ops import standard_scaler
424
424
 
425
425
  try:
426
426
 
@@ -533,8 +533,8 @@ def predict_from_memory(Input, W, scaler_params=None, activations=['linear'], ac
533
533
  cupyarray: Output from the model.
534
534
  """
535
535
 
536
- from .data_operations_cuda import standard_scaler
537
- from .activation_functions_cuda import apply_activation
536
+ from .data_ops import standard_scaler
537
+ from .activation_functions import apply_activation
538
538
 
539
539
  if isinstance(activations, str):
540
540
  activations = [activations]
@@ -2,7 +2,7 @@
2
2
  """
3
3
 
4
4
 
5
- NEU (Neural Networks) on CUDA
5
+ NN (Neural Networks) on CUDA
6
6
  =============================
7
7
  This module hosts functions for training and evaluating artificial neural networks on CUDA GPU for labeled classification tasks (for now).
8
8
 
@@ -41,7 +41,7 @@ Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJe
41
41
 
42
42
  PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
43
43
 
44
- - Author: Hasan Can Beydili
44
+ - Creator: Hasan Can Beydili
45
45
  - YouTube: https://www.youtube.com/@HasanCanBeydili
46
46
  - Linkedin: https://www.linkedin.com/in/hasan-can-beydili-77a1b9270/
47
47
  - Instagram: https://www.instagram.com/canbeydilj
@@ -54,14 +54,14 @@ import copy
54
54
  import random
55
55
 
56
56
  ### LIBRARY IMPORTS ###
57
- from .ui import loading_bars, initialize_loading_bar
58
- from .data_operations_cuda import normalization
59
- from .activation_functions_cuda import apply_activation, all_activations
60
- from .model_operations_cuda import get_acc, get_preds_softmax
61
- from .memory_operations import transfer_to_gpu, transfer_to_cpu, optimize_labels
62
- from .loss_functions_cuda import categorical_crossentropy, binary_crossentropy
63
- from .fitness_functions import wals
64
- from .visualizations_cuda import (
57
+ from ..ui import loading_bars, initialize_loading_bar
58
+ from .data_ops import normalization
59
+ from .activation_functions import apply_activation, all_activations
60
+ from .model_ops import get_acc, get_preds_softmax
61
+ from ..memory_ops import transfer_to_gpu, transfer_to_cpu, optimize_labels
62
+ from .loss_functions import categorical_crossentropy, binary_crossentropy
63
+ from ..fitness_functions import wals
64
+ from .visualizations import (
65
65
  draw_neural_web,
66
66
  display_visualizations_for_learner,
67
67
  update_history_plots_for_learner,
@@ -127,19 +127,30 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
127
127
  * This function also able to train classic MLP model architectures.
128
128
  * And my newest innovative architecture: PTNN (Potentiation Transfer Neural Network).
129
129
 
130
+ Examples:
131
+
132
+ This creates a PLAN model:
133
+ - ```learn(x_train, y_train, optimizer, pop_size=100, gen=100, fit_start=True) ```
134
+
135
+ This creates a MLP model(with 2 hidden layer):
136
+ - ```learn(x_train, y_train, optimizer, pop_size=100, gen=100, fit_start=False, neurons=[64, 64], activation_functions=['tanh', 'tanh']) ```
137
+
138
+ This creates a PTNN model(with 2 hidden layer & 1 aggregation layer(comes with PLAN)):
139
+ - ```learn(x_train, y_train, optimizer, pop_size=100, gen=[10, 100], fit_start=True, neurons=[64, 64], activation_functions=['tanh', 'tanh']) ```
140
+
130
141
  :Args:
131
142
  :param x_train: (array-like): Training input data.
132
143
  :param y_train: (array-like): Labels for training data.
133
- :param optimizer: (function): Optimization technique with hyperparameters. (PLAN, MLP & PTNN (all) using ENE for optimization. Gradient based technique's will added in the future.) Please use this: from pyerualjetwork.ene_cuda import evolver (and) optimizer = lambda *args, **kwargs: evolver(*args, 'here give your hyperparameters for example: activation_add_prob=0.85', **kwargs) Example:
144
+ :param optimizer: (function): Optimization technique with hyperparameters. (PLAN, MLP & PTNN (all) using ENE for optimization. Gradient based technique's will added in the future.) Please use this: from pyerualjetwork.cuda.ene import evolver (and) optimizer = lambda *args, **kwargs: evolver(*args, 'here give your hyperparameters for example: activation_add_prob=0.85', **kwargs) Example:
134
145
  ```python
135
146
 
136
- optimizer = lambda *args, **kwargs: ene_cuda.evolver(*args,
147
+ optimizer = lambda *args, **kwargs: ene.evolver(*args,
137
148
  activation_add_prob=0.05,
138
149
  strategy='aggressive',
139
150
  policy='more_selective',
140
151
  **kwargs)
141
152
 
142
- model = neu_cuda.learn(x_train,
153
+ model = nn.learn(x_train,
143
154
  y_train,
144
155
  optimizer,
145
156
  fit_start=True,
@@ -176,7 +187,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
176
187
  tuple: A list for model parameters: [Weight matrix, Train Preds, Train Accuracy, [Activations functions]]. You can acces this parameters in model_operations module. For example: model_operations.get_weights() for Weight matrix.
177
188
  """
178
189
 
179
- from .ene_cuda import define_genomes
190
+ from .ene import define_genomes
180
191
 
181
192
  data = 'Train'
182
193
 
@@ -197,13 +208,13 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
197
208
  x_train = transfer_to_gpu(x_train, dtype=x_train.dtype)
198
209
  y_train = transfer_to_gpu(y_train, dtype=y_train.dtype)
199
210
 
200
- from .data_operations_cuda import batcher
211
+ from .data_ops import batcher
201
212
 
202
213
  elif memory == 'cpu':
203
214
  x_train = transfer_to_cpu(x_train, dtype=x_train.dtype)
204
215
  y_train = transfer_to_cpu(y_train, dtype=y_train.dtype)
205
216
 
206
- from .data_operations_cpu import batcher
217
+ from pyerualjetwork.cpu.data_ops import batcher
207
218
 
208
219
  else:
209
220
  raise ValueError("memory parameter must be 'cpu' or 'gpu'.")
@@ -87,7 +87,7 @@ def draw_model_architecture(model_name, model_path=''):
87
87
  Visualizes the architecture of a neural network model with multiple inputs based on activation functions.
88
88
  """
89
89
 
90
- from .model_operations_cuda import load_model, get_scaler, get_act, get_weights
90
+ from .model_ops import load_model, get_scaler, get_act, get_weights
91
91
 
92
92
  model = load_model(model_name=model_name, model_path=model_path)
93
93
 
@@ -183,7 +183,7 @@ def draw_model_architecture(model_name, model_path=''):
183
183
 
184
184
  def draw_activations(x_train, activation):
185
185
 
186
- from . import activation_functions_cuda as af
186
+ from . import activation_functions as af
187
187
 
188
188
  if activation == 'sigmoid':
189
189
  result = af.Sigmoid(x_train)
@@ -328,10 +328,10 @@ def draw_activations(x_train, activation):
328
328
 
329
329
  def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activations):
330
330
 
331
- from .metrics_cuda import metrics, confusion_matrix, roc_curve
332
- from .ui import loading_bars, initialize_loading_bar
333
- from .data_operations_cuda import decode_one_hot
334
- from .model_operations_cuda import predict_model_ram
331
+ from .metrics import metrics, confusion_matrix, roc_curve
332
+ from ..ui import loading_bars, initialize_loading_bar
333
+ from .data_ops import decode_one_hot
334
+ from .model_ops import predict_model_ram
335
335
 
336
336
  bar_format_normal = loading_bars()[0]
337
337
 
@@ -451,8 +451,8 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activations):
451
451
 
452
452
  def plot_decision_boundary(x, y, activations, W, artist=None, ax=None):
453
453
 
454
- from .model_operations_cuda import predict_model_ram
455
- from .data_operations_cuda import decode_one_hot
454
+ from .model_ops import predict_model_ram
455
+ from .data_ops import decode_one_hot
456
456
 
457
457
  feature_indices = [0, 1]
458
458
 
@@ -509,8 +509,8 @@ def plot_decision_boundary(x, y, activations, W, artist=None, ax=None):
509
509
 
510
510
  def plot_decision_space(x, y, y_preds=None, s=100, color='tab20'):
511
511
 
512
- from .metrics_cuda import pca
513
- from .data_operations_cuda import decode_one_hot
512
+ from .metrics import pca
513
+ from .data_ops import decode_one_hot
514
514
 
515
515
  if x.shape[1] > 2:
516
516
 
@@ -699,7 +699,7 @@ def update_neuron_history_for_learner(LTPW, ax1, row, col, class_count, artist5,
699
699
 
700
700
  def initialize_visualization_for_learner(show_history, neurons_history, neural_web_history, x_train, y_train):
701
701
 
702
- from .data_operations_cuda import find_closest_factors
702
+ from .data_ops import find_closest_factors
703
703
  viz_objects = {}
704
704
 
705
705
  if show_history:
pyerualjetwork/help.py CHANGED
@@ -1,4 +1,4 @@
1
- from pyerualjetwork.activation_functions_cpu import all_activations
1
+ from pyerualjetwork.cuda.nn import all_activations
2
2
 
3
3
 
4
4
  def activation_potentiation():
@@ -11,7 +11,7 @@ def activation_potentiation():
11
11
 
12
12
  def docs_and_examples():
13
13
 
14
- print('PLAN document: https://github.com/HCB06/Anaplan/tree/main/Welcome_to_PLAN\n')
15
- print('PLAN examples: https://github.com/HCB06/Anaplan/tree/main/Welcome_to_PyerualJetwork/ExampleCodes\n')
16
- print('PLANEAT examples: https://github.com/HCB06/Anaplan/tree/main/Welcome_to_PyerualJetwork/ExampleCodes/ENE\n')
17
- print('Anaplan document and examples: https://github.com/HCB06/Anaplan/tree/main/Welcome_to_Anaplan')
14
+ print('PLAN & ENE document: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PLAN\n')
15
+ print('PLAN examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes\n')
16
+ print('ENE examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes/ENE\n')
17
+ print('PyerualJetwork document and examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork')
@@ -38,7 +38,7 @@ def update_model_to_v5(model_name, model_path, is_cuda):
38
38
 
39
39
  if is_cuda:
40
40
 
41
- from .model_operations_cuda import (get_act,
41
+ from pyerualjetwork.cuda.model_ops import (get_act,
42
42
  get_weights,
43
43
  get_scaler,
44
44
  get_acc,
@@ -49,7 +49,7 @@ def update_model_to_v5(model_name, model_path, is_cuda):
49
49
  save_model)
50
50
  else:
51
51
 
52
- from .model_operations_cpu import (get_act,
52
+ from pyerualjetwork.cpu.model_ops import (get_act,
53
53
  get_weights,
54
54
  get_scaler,
55
55
  get_acc,
@@ -17,7 +17,7 @@ Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJe
17
17
 
18
18
  PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
19
19
 
20
- - Author: Hasan Can Beydili
20
+ - Creator: Hasan Can Beydili
21
21
  - YouTube: https://www.youtube.com/@HasanCanBeydili
22
22
  - Linkedin: https://www.linkedin.com/in/hasan-can-beydili-77a1b9270/
23
23
  - Instagram: https://www.instagram.com/canbeydilj
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5.28a0
3
+ Version: 5.31
4
4
  Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -24,17 +24,14 @@ GitHub Page: https://github.com/HCB06/PyerualJetwork
24
24
 
25
25
  YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7HbsBpCx2VTJ4SK9wcPyse-EHw
26
26
 
27
- pip install pyerualjetwork
27
+ installation:
28
+ 'pip install pyerualjetwork'
28
29
 
29
- from pyerualjetwork import neu_cpu
30
- from pyerualjetwork import ene_cpu
31
- from pyerualjetwork import data_operations_cpu
32
- from pyerualjetwork import model_operations_cpu
33
-
34
- from pyerualjetwork import neu_cuda
35
- from pyerualjetwork import ene_cuda
36
- from pyerualjetwork import data_operations_cuda
37
- from pyerualjetwork import model_operations_cuda
30
+ package modules:
31
+ 'from pyerualjetwork.cpu import nn, ene, data_ops, model_ops, memory_ops'
32
+ 'from pyerualjetwork.cuda import nn, ene, data_ops, model_ops, memory_ops'
33
+
34
+ please read docstrings.
38
35
 
39
36
  PyerualJetwork has Issue Solver. This operation provides users ready-to-use functions to identify potential issues
40
37
  caused by version incompatibilities in major updates, ensuring users are not affected by such problems.
@@ -74,10 +71,10 @@ PyerualJetwork is free to use for commercial business and individual users.
74
71
  PyerualJetwork ready for both eager execution(like PyTorch) and static graph(like Tensorflow) concepts because PyerualJetwork using only functions.
75
72
  For example:
76
73
 
77
- fit function only fits given training data(suitable for dynamic graph) but learner function learns and optimize entire architecture(suitable for static graph). Or more deeper eager executions PyerualJetwork have: feed_forward function, list of activation functions, loss functions. You can create your unique model architecture. Move your data to GPU or CPU or manage how much should in GPU, Its all up to you.
74
+ plan_fit function only fits given training data(suitable for dynamic graph) but learn function learns and optimize entire architecture(suitable for static graph). Or more deeper eager executions PyerualJetwork have: cross_over function, mutation function, list of activation functions, loss functions. You can create your unique model architecture. Move your data to GPU or CPU or manage how much should in GPU, Its all up to you.
78
75
  <br><br>
79
76
 
80
- PyerualJetworket includes PLAN, MLP & ENE.<br>
77
+ PyerualJetworket includes PLAN, MLP, PTNN & ENE.<br>
81
78
 
82
79
  PLAN VISION:<br>
83
80
 
@@ -122,6 +119,6 @@ HOW DO I IMPORT IT TO MY PROJECT?
122
119
 
123
120
  Anaconda users can access the 'Anaconda Prompt' terminal from the Start menu and add the necessary library modules to the Python module search queue by typing "pip install pyerualjetwork" and pressing enter. If you are not using Anaconda, you can simply open the 'cmd' Windows command terminal from the Start menu and type "pip install PyerualJetwork". (Visual Studio Code reccomended) After installation, it's important to periodically open the terminal of the environment you are using and stay up to date by using the command "pip install PyerualJetwork --upgrade".
124
121
 
125
- After installing the module using "pip" you can now call the library module in your project environment. Use: “from pyerualjetwork import neu_cpu”. Now, you can call the necessary functions from the neu module.
122
+ After installing the module using "pip" you can now call the library module in your project environment. Use: “from pyerualjetwork.cpu import nn. Now, you can call the necessary functions from the nn module.
126
123
 
127
124
  The PLAN algorithm & ENE algorithm will not be explained in this document. This document focuses on how professionals can integrate and use PyerualJetwork in their systems. However, briefly, the PLAN algorithm can be described as a classification algorithm. PLAN algorithm achieves this task with an incredibly energy-efficient, fast, and hyperparameter-free user-friendly approach. For more detailed information, you can check out ![PYERUALJETWORK USER MANUEL](https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf) file.
@@ -0,0 +1,28 @@
1
+ pyerualjetwork/__init__.py,sha256=virzpB1MRqS8c5NYr5Gy9N2IMzwq7PU2QgBPMxm0oLQ,2704
2
+ pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
3
+ pyerualjetwork/help.py,sha256=Nyi0gHAN9ZnO4wgQLeENt0n7tSCZ3hJmjaJ853eGjCE,831
4
+ pyerualjetwork/issue_solver.py,sha256=3pZTGotS29sy3pIuGQoJFUePibtSzS-tNoU80T_Usgk,3131
5
+ pyerualjetwork/memory_ops.py,sha256=TUFh9SYWCKL6N-vNdWId_EwU313TuZomQCHOrltrD-4,14280
6
+ pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
7
+ pyerualjetwork/cpu/__init__.py,sha256=0yAYner_-v7SmT3P7JV2itU8xJUQdQpb40dhAMQiZkc,829
8
+ pyerualjetwork/cpu/activation_functions.py,sha256=zZSoOQ452Ykp_RsHVxklxesJmmFgufyIB4F3WQjudEQ,6689
9
+ pyerualjetwork/cpu/data_ops.py,sha256=-XeMLRTQ5g7GMJdKYVMKJA7bSj6PbKEEpbQDRRhAIT4,16166
10
+ pyerualjetwork/cpu/ene.py,sha256=ZLCaCxkpAmFLdxDS2OH-S8fT4jKq4HNVCHgpIufb8lg,44322
11
+ pyerualjetwork/cpu/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
12
+ pyerualjetwork/cpu/metrics.py,sha256=WhZ8iEqWehaygPRADUlhA5j_Qv3UwqV_eMxpyRVkeVs,6070
13
+ pyerualjetwork/cpu/model_ops.py,sha256=9iZgl2yPYH6m7d9C-QdBYnkDEZiXgutxofck2papRxU,20478
14
+ pyerualjetwork/cpu/nn.py,sha256=J_Y5us-vOIhcD_h4CgaY4aOza4xi9ISu2WAfii1AfFw,32020
15
+ pyerualjetwork/cpu/visualizations.py,sha256=rOQsc-W8b71z7ovXSoF49lx4fmpvlaHLsyj9ejWnhnI,28164
16
+ pyerualjetwork/cuda/__init__.py,sha256=NbqvAS4jlMdoFdXa5_hi5ukXQ5zAZR_5BQ4QAqtiKug,879
17
+ pyerualjetwork/cuda/activation_functions.py,sha256=FmoSAxDr9SGO4nkE6ZflXK4pmvZ0sL3Epe1Lz-3GOVI,6766
18
+ pyerualjetwork/cuda/data_ops.py,sha256=SiNodFNmWyTPY_KnKuAi9biPRdpTAYY3XM01bRSUPCs,18510
19
+ pyerualjetwork/cuda/ene.py,sha256=aSCPr9VFdgK2cxxfwuP7z0jbJL9gkKNM0rgu8ihLarQ,44830
20
+ pyerualjetwork/cuda/loss_functions.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
21
+ pyerualjetwork/cuda/metrics.py,sha256=PjDBoRvr6va8vRvDIJJGBO4-I4uumrk3NCM1Vz4NJTo,5054
22
+ pyerualjetwork/cuda/model_ops.py,sha256=lM6yT4ZMHs-0_M3Op8m8mQV_HRADm7ROHESgyTc7bCw,21204
23
+ pyerualjetwork/cuda/nn.py,sha256=7rbaIEcmssaFgcionWVRmKijlgFyftVjf-MMNaLO_28,33140
24
+ pyerualjetwork/cuda/visualizations.py,sha256=9l5BhXqXoeopdhLvVGvjH1TKYZb9JdKOsSE2IYD02zs,28569
25
+ pyerualjetwork-5.31.dist-info/METADATA,sha256=8xJBTVON9V34hEKYXvZQdPS1HtEDvLNRiif0A1pqRos,8020
26
+ pyerualjetwork-5.31.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
27
+ pyerualjetwork-5.31.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
28
+ pyerualjetwork-5.31.dist-info/RECORD,,
@@ -1,26 +0,0 @@
1
- pyerualjetwork/__init__.py,sha256=wDb7sd2nFRlS8ty2Zrkq7FZd51YvCHbKHfMCibTrssA,2735
2
- pyerualjetwork/activation_functions_cpu.py,sha256=axsVRSjw0GuRB709aBwyaNDgAi2vJBIqmJjTmcsCBBY,5743
3
- pyerualjetwork/activation_functions_cuda.py,sha256=mNlecgmVX9G0_2yQ2_c6XQoMfvcdWIt9b1RUTdoLNBg,5809
4
- pyerualjetwork/data_operations_cpu.py,sha256=HemqiYfSdlQKTTYNzpCh_9lTtS3AimMI4DvqJBAGjGw,16186
5
- pyerualjetwork/data_operations_cuda.py,sha256=5zgyJGPjQuHyx6IHNkRwMguYhm-GcI6Hal49WNvw-bM,18536
6
- pyerualjetwork/ene_cpu.py,sha256=35xz-KSmCigCg4lU7TD20EZbfuAN5PS21NcSywMTKhs,44350
7
- pyerualjetwork/ene_cuda.py,sha256=9RyXC4JkRfDfhQUDkphFaKD89MiTp3QIia1brZTjsNA,44860
8
- pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
9
- pyerualjetwork/help.py,sha256=FcX8mxo1_mvoqONVXY0Kn7S09CDkhi0jwNmn8g9mYZc,804
10
- pyerualjetwork/issue_solver.py,sha256=iY6hSsBxYI5l82RwnXQp2DrRUJyksk_7U9GUSnt2YfU,3117
11
- pyerualjetwork/loss_functions_cpu.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
12
- pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
13
- pyerualjetwork/memory_operations.py,sha256=g24d-cDuUFc0fOEtk3AJe-z_EBctYV5S4cY1rQ6VGiE,14279
14
- pyerualjetwork/metrics_cpu.py,sha256=vbfMwS0ay2heMSa0GNo-ydLjQ8cfexbLwaREp4FKAtY,6081
15
- pyerualjetwork/metrics_cuda.py,sha256=PWyJyexeqlPKb09LAcF55JvhZVeXLCu3P_siYq5m2gg,5065
16
- pyerualjetwork/model_operations_cpu.py,sha256=Y0uPkLVbdodP7lC-fOPdja3RWi2J9z2rwWIS2pxzotU,20523
17
- pyerualjetwork/model_operations_cuda.py,sha256=B6vNYmqvrEJ3ZMGE1RWeJYn3V-JCsXhCHvS-aX4bWuU,21254
18
- pyerualjetwork/neu_cpu.py,sha256=h97WXTdj0Sizgo-imcyeStxW4dixUITwrla34bd8EWQ,31432
19
- pyerualjetwork/neu_cuda.py,sha256=NnQEnMRz5m3wPlotNKy6v4BfNkuzyaK6ZlAWcjBdZ8Y,32569
20
- pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
21
- pyerualjetwork/visualizations_cpu.py,sha256=StyD1Hl1Gt55EMqR6tO3yVJZdPyGkOgCnQ75Zn8K6J8,28252
22
- pyerualjetwork/visualizations_cuda.py,sha256=7lYrkOdrjwQGB3T4k_vI8UDxsm_TRjzaSSg9GhlNczs,28667
23
- pyerualjetwork-5.28a0.dist-info/METADATA,sha256=Afcltg5ySVvZ_5LLsNKeUYk8xXQTRpbFqih9kNrut5w,8135
24
- pyerualjetwork-5.28a0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
25
- pyerualjetwork-5.28a0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
26
- pyerualjetwork-5.28a0.dist-info/RECORD,,