pyerualjetwork 5.25__py3-none-any.whl → 5.27__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/activation_functions_cuda.py +11 -5
- pyerualjetwork/ene_cpu.py +0 -14
- pyerualjetwork/ene_cuda.py +0 -14
- pyerualjetwork/neu_cpu.py +1 -1
- pyerualjetwork/neu_cuda.py +1 -1
- {pyerualjetwork-5.25.dist-info → pyerualjetwork-5.27.dist-info}/METADATA +1 -1
- {pyerualjetwork-5.25.dist-info → pyerualjetwork-5.27.dist-info}/RECORD +10 -10
- {pyerualjetwork-5.25.dist-info → pyerualjetwork-5.27.dist-info}/WHEEL +0 -0
- {pyerualjetwork-5.25.dist-info → pyerualjetwork-5.27.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
|
|
42
42
|
- Contact: tchasancan@gmail.com
|
43
43
|
"""
|
44
44
|
|
45
|
-
__version__ = "5.
|
45
|
+
__version__ = "5.27"
|
46
46
|
__update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
|
47
47
|
* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
|
48
48
|
* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
@@ -202,13 +202,19 @@ def apply_activation(Input, activation_list):
|
|
202
202
|
|
203
203
|
try:
|
204
204
|
|
205
|
-
|
206
|
-
|
205
|
+
if isinstance(activation_list, str):
|
206
|
+
activation_list = [activation_list]
|
207
207
|
|
208
|
-
|
208
|
+
activation_list = [str(act).lower() for act in activation_list]
|
209
209
|
|
210
|
-
|
211
|
-
|
210
|
+
valid_activations = [act for act in activation_list if act in activation_functions]
|
211
|
+
|
212
|
+
result = origin_input
|
213
|
+
for act in valid_activations:
|
214
|
+
result = activation_functions[act](result)
|
215
|
+
|
216
|
+
return result
|
217
|
+
|
212
218
|
except Exception as e:
|
213
219
|
warnings.warn(f"Error in activation processing: {str(e)}", RuntimeWarning)
|
214
220
|
return Input
|
pyerualjetwork/ene_cpu.py
CHANGED
@@ -97,13 +97,6 @@ def define_genomes(input_shape, output_shape, population_size, neurons=[], activ
|
|
97
97
|
if l != hidden:
|
98
98
|
population_activations[i][l] = activation_functions[l]
|
99
99
|
|
100
|
-
# ACTIVATIONS APPLYING IN WEIGHTS SPECIFIC OUTPUT CONNECTIONS (MORE PLAN LIKE FEATURES(FOR NON-LINEARITY)):
|
101
|
-
|
102
|
-
for j in range(population_weights[i][l].shape[0]):
|
103
|
-
|
104
|
-
population_weights[i][l][j,:] = apply_activation(population_weights[i][l][j,:], population_activations[i])
|
105
|
-
population_weights[i][l][j,:] = normalization(population_weights[i][l][j,:], dtype=dtype)
|
106
|
-
|
107
100
|
return population_weights, population_activations
|
108
101
|
|
109
102
|
else:
|
@@ -118,13 +111,6 @@ def define_genomes(input_shape, output_shape, population_size, neurons=[], activ
|
|
118
111
|
population_weights[i] = np.random.uniform(-1, 1, (output_shape, input_shape)).astype(dtype)
|
119
112
|
population_activations[i] = activations[int(random.uniform(0, len(activations)-1))]
|
120
113
|
|
121
|
-
# ACTIVATIONS APPLYING IN WEIGHTS SPECIFIC OUTPUT CONNECTIONS (MORE PLAN LIKE FEATURES(FOR NON-LINEARITY)):
|
122
|
-
|
123
|
-
for j in range(population_weights[i].shape[0]):
|
124
|
-
|
125
|
-
population_weights[i][j,:] = apply_activation(population_weights[i][j,:], population_activations[i])
|
126
|
-
population_weights[i][j,:] = normalization(population_weights[i][j,:], dtype=dtype)
|
127
|
-
|
128
114
|
return np.array(population_weights, dtype=dtype), population_activations
|
129
115
|
|
130
116
|
|
pyerualjetwork/ene_cuda.py
CHANGED
@@ -98,13 +98,6 @@ def define_genomes(input_shape, output_shape, population_size, neurons=[], activ
|
|
98
98
|
if l != hidden:
|
99
99
|
population_activations[i][l] = activation_functions[l]
|
100
100
|
|
101
|
-
# ACTIVATIONS APPLYING IN WEIGHTS SPECIFIC OUTPUT CONNECTIONS (MORE PLAN LIKE FEATURES(FOR NON-LINEARITY)):
|
102
|
-
|
103
|
-
for j in range(population_weights[i][l].shape[0]):
|
104
|
-
|
105
|
-
population_weights[i][l][j,:] = apply_activation(population_weights[i][l][j,:], population_activations[i])
|
106
|
-
population_weights[i][l][j,:] = normalization(population_weights[i][l][j,:], dtype=dtype)
|
107
|
-
|
108
101
|
return population_weights, population_activations
|
109
102
|
|
110
103
|
else:
|
@@ -119,13 +112,6 @@ def define_genomes(input_shape, output_shape, population_size, neurons=[], activ
|
|
119
112
|
population_weights[i] = cp.random.uniform(-1, 1, (output_shape, input_shape)).astype(dtype, copy=False)
|
120
113
|
population_activations[i] = activations[int(random.uniform(0, len(activations)-1))]
|
121
114
|
|
122
|
-
# ACTIVATIONS APPLYING IN WEIGHTS SPECIFIC OUTPUT CONNECTIONS (MORE PLAN LIKE FEATURES(FOR NON-LINEARITY)):
|
123
|
-
|
124
|
-
for j in range(population_weights[i].shape[0]):
|
125
|
-
|
126
|
-
population_weights[i][j,:] = apply_activation(population_weights[i][j,:], population_activations[i])
|
127
|
-
population_weights[i][j,:] = normalization(population_weights[i][j,:], dtype=dtype)
|
128
|
-
|
129
115
|
return cp.array(population_weights, dtype=dtype), population_activations
|
130
116
|
|
131
117
|
def evolver(weights,
|
pyerualjetwork/neu_cpu.py
CHANGED
@@ -250,7 +250,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
|
|
250
250
|
loss_list = []
|
251
251
|
target_pop = []
|
252
252
|
|
253
|
-
progress = initialize_loading_bar(total=
|
253
|
+
progress = initialize_loading_bar(total=pop_size, desc="", ncols=77, bar_format=bar_format_learner)
|
254
254
|
|
255
255
|
if fit_start is False:
|
256
256
|
weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), neurons=neurons, activation_functions=activations, population_size=pop_size, dtype=dtype)
|
pyerualjetwork/neu_cuda.py
CHANGED
@@ -259,7 +259,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
|
|
259
259
|
loss_list = []
|
260
260
|
target_pop = []
|
261
261
|
|
262
|
-
progress = initialize_loading_bar(total=
|
262
|
+
progress = initialize_loading_bar(total=pop_size, desc="", ncols=79, bar_format=bar_format_learner)
|
263
263
|
|
264
264
|
if fit_start is False:
|
265
265
|
weight_pop, act_pop = define_genomes(input_shape=len(x_train[0]), output_shape=len(y_train[0]), neurons=neurons, activation_functions=activations, population_size=pop_size, dtype=dtype)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 5.
|
3
|
+
Version: 5.27
|
4
4
|
Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,10 +1,10 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=OMPuF8AehsQx7gfqt_S76mnrYyodeCBdRAar-AJRUxk,2733
|
2
2
|
pyerualjetwork/activation_functions_cpu.py,sha256=axsVRSjw0GuRB709aBwyaNDgAi2vJBIqmJjTmcsCBBY,5743
|
3
|
-
pyerualjetwork/activation_functions_cuda.py,sha256=
|
3
|
+
pyerualjetwork/activation_functions_cuda.py,sha256=mNlecgmVX9G0_2yQ2_c6XQoMfvcdWIt9b1RUTdoLNBg,5809
|
4
4
|
pyerualjetwork/data_operations_cpu.py,sha256=HemqiYfSdlQKTTYNzpCh_9lTtS3AimMI4DvqJBAGjGw,16186
|
5
5
|
pyerualjetwork/data_operations_cuda.py,sha256=5zgyJGPjQuHyx6IHNkRwMguYhm-GcI6Hal49WNvw-bM,18536
|
6
|
-
pyerualjetwork/ene_cpu.py,sha256=
|
7
|
-
pyerualjetwork/ene_cuda.py,sha256=
|
6
|
+
pyerualjetwork/ene_cpu.py,sha256=35xz-KSmCigCg4lU7TD20EZbfuAN5PS21NcSywMTKhs,44350
|
7
|
+
pyerualjetwork/ene_cuda.py,sha256=9RyXC4JkRfDfhQUDkphFaKD89MiTp3QIia1brZTjsNA,44860
|
8
8
|
pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
|
9
9
|
pyerualjetwork/help.py,sha256=FcX8mxo1_mvoqONVXY0Kn7S09CDkhi0jwNmn8g9mYZc,804
|
10
10
|
pyerualjetwork/issue_solver.py,sha256=iY6hSsBxYI5l82RwnXQp2DrRUJyksk_7U9GUSnt2YfU,3117
|
@@ -15,12 +15,12 @@ pyerualjetwork/metrics_cpu.py,sha256=vbfMwS0ay2heMSa0GNo-ydLjQ8cfexbLwaREp4FKAtY
|
|
15
15
|
pyerualjetwork/metrics_cuda.py,sha256=PWyJyexeqlPKb09LAcF55JvhZVeXLCu3P_siYq5m2gg,5065
|
16
16
|
pyerualjetwork/model_operations_cpu.py,sha256=Y0uPkLVbdodP7lC-fOPdja3RWi2J9z2rwWIS2pxzotU,20523
|
17
17
|
pyerualjetwork/model_operations_cuda.py,sha256=B6vNYmqvrEJ3ZMGE1RWeJYn3V-JCsXhCHvS-aX4bWuU,21254
|
18
|
-
pyerualjetwork/neu_cpu.py,sha256=
|
19
|
-
pyerualjetwork/neu_cuda.py,sha256=
|
18
|
+
pyerualjetwork/neu_cpu.py,sha256=Mi-KcFVeoemK9I32H5Ov2oDPSwZG98dpQM3xaMuDsKE,31436
|
19
|
+
pyerualjetwork/neu_cuda.py,sha256=WBNZwwTEF7r6xIGti-8SFmTTTod_z7uP7NDgRhHgdHg,32573
|
20
20
|
pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
21
21
|
pyerualjetwork/visualizations_cpu.py,sha256=StyD1Hl1Gt55EMqR6tO3yVJZdPyGkOgCnQ75Zn8K6J8,28252
|
22
22
|
pyerualjetwork/visualizations_cuda.py,sha256=7lYrkOdrjwQGB3T4k_vI8UDxsm_TRjzaSSg9GhlNczs,28667
|
23
|
-
pyerualjetwork-5.
|
24
|
-
pyerualjetwork-5.
|
25
|
-
pyerualjetwork-5.
|
26
|
-
pyerualjetwork-5.
|
23
|
+
pyerualjetwork-5.27.dist-info/METADATA,sha256=eNL98od3NdBtaPKp2mQm1zir5FMfZJEtJE14kCVMbfM,8133
|
24
|
+
pyerualjetwork-5.27.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
25
|
+
pyerualjetwork-5.27.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
26
|
+
pyerualjetwork-5.27.dist-info/RECORD,,
|
File without changes
|
File without changes
|