pyerualjetwork 5.23__py3-none-any.whl → 5.24__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
42
42
  - Contact: tchasancan@gmail.com
43
43
  """
44
44
 
45
- __version__ = "5.23"
45
+ __version__ = "5.24"
46
46
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
47
47
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
48
48
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
@@ -6,9 +6,8 @@ import warnings
6
6
  # ACTIVATION FUNCTIONS -----
7
7
 
8
8
  def all_activations():
9
- # softplus, cubic, square_quartic, cubic_quadratic, scaled_cubic out.
9
+
10
10
  activations_list = ['linear', 'sigmoid', 'relu', 'tanh', 'circular', 'spiral', 'sin_plus', 'mod_circular', 'tanh_circular', 'leaky_relu', 'gelu', 'sinakt', 'p_squared', 'sglu', 'dlrelu', 'acos', 'isra', 'waveakt', 'arctan', 'bent_identity', 'softsign', 'pwl', 'sine', 'tanh_square', 'sine_square', 'logarithmic', 'sine_offset']
11
- # suggest: tanh, arctan, selu, elu, dlrelu, isra, bent_identity
12
11
  return activations_list
13
12
 
14
13
  def spiral_activation(x):
pyerualjetwork/ene_cpu.py CHANGED
@@ -350,7 +350,7 @@ def evolver(weights,
350
350
 
351
351
  good_weights = weights[slice_center:]
352
352
  bad_weights = weights[:slice_center]
353
- best_w = np.copy(good_weights[-1]) if is_mlp is False else copy.deepcopy(good_weights[-1])
353
+ best_weight = np.copy(good_weights[-1]) if is_mlp is False else copy.deepcopy(good_weights[-1])
354
354
 
355
355
  good_activations = list(activations[slice_center:])
356
356
  bad_activations = list(activations[:slice_center])
@@ -377,7 +377,7 @@ def evolver(weights,
377
377
  for i in range(len(bad_weights)):
378
378
 
379
379
  if policy == 'aggressive':
380
- first_parent_W = np.copy(best_w)
380
+ first_parent_W = np.copy(best_weight)
381
381
  first_parent_act = best_activations
382
382
  first_parent_fitness = best_fitness
383
383
 
@@ -489,7 +489,7 @@ def evolver(weights,
489
489
  activations = child_act + mutated_act
490
490
 
491
491
  if save_best_genome:
492
- weights[0] = best_w
492
+ weights[0] = best_weight
493
493
  activations[0] = best_activations
494
494
 
495
495
  ### INFO PRINTING CONSOLE
@@ -359,7 +359,7 @@ def evolver(weights,
359
359
 
360
360
  good_weights = weights[slice_center:]
361
361
  bad_weights = weights[:slice_center]
362
- best_w = cp.copy(good_weights[-1])
362
+ best_weight = cp.copy(good_weights[-1])
363
363
 
364
364
  good_activations = list(activations[slice_center:])
365
365
  bad_activations = list(activations[:slice_center])
@@ -386,7 +386,7 @@ def evolver(weights,
386
386
  for i in range(len(bad_weights)):
387
387
 
388
388
  if policy == 'aggressive':
389
- first_parent_W = best_w
389
+ first_parent_W = best_weight
390
390
  first_parent_act = best_activations
391
391
  first_parent_fitness = best_fitness
392
392
 
@@ -507,7 +507,7 @@ def evolver(weights,
507
507
  activations = child_act + mutated_act
508
508
 
509
509
  if save_best_genome:
510
- weights[0] = best_w
510
+ weights[0] = best_weight
511
511
  activations[0] = best_activations
512
512
 
513
513
  ### INFO PRINTING CONSOLE
pyerualjetwork/neu_cpu.py CHANGED
@@ -340,13 +340,19 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
340
340
 
341
341
  if fitness >= best_fitness:
342
342
 
343
- best_fitness = copy.copy(fitness)
344
- best_acc = copy.copy(acc)
345
- best_loss = copy.copy(train_loss)
343
+ best_fitness = fitness
344
+ best_acc = acc
345
+ best_loss = train_loss
346
346
  best_weight = np.copy(weight_pop[j]) if model_type == 'PLAN' else copy.deepcopy(weight_pop[j])
347
- best_model = copy.deepcopy(model)
347
+ best_model = model
348
348
 
349
- final_activations = act_pop[j].copy() if isinstance(act_pop[j], list) else act_pop[j]
349
+ if isinstance(act_pop[j], list) and model_type == 'PLAN':
350
+ final_activations = act_pop[j].copy()
351
+ elif isinstance(act_pop[j], str):
352
+ final_activations = act_pop[j]
353
+ else:
354
+ final_activations = copy.deepcopy(act_pop[j])
355
+
350
356
  if model_type == 'PLAN': final_activations = [final_activations[0]] if len(set(final_activations)) == 1 else final_activations # removing if all same
351
357
 
352
358
  if batch_size == 1:
@@ -351,13 +351,19 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
351
351
 
352
352
  if fitness >= best_fitness:
353
353
 
354
- best_fitness = copy.copy(fitness)
355
- best_acc = copy.copy(acc)
356
- best_loss = copy.copy(train_loss)
354
+ best_fitness = fitness
355
+ best_acc = acc
356
+ best_loss = train_loss
357
357
  best_weight = cp.copy(weight_pop[j]) if model_type == 'PLAN' else copy.deepcopy(weight_pop[j])
358
- best_model = copy.deepcopy(model)
358
+ best_model = model
359
+
360
+ if isinstance(act_pop[j], list) and model_type == 'PLAN':
361
+ final_activations = act_pop[j].copy()
362
+ elif isinstance(act_pop[j], str):
363
+ final_activations = act_pop[j]
364
+ else:
365
+ final_activations = copy.deepcopy(act_pop[j])
359
366
 
360
- final_activations = act_pop[j].copy() if isinstance(act_pop[j], list) else act_pop[j]
361
367
  if model_type == 'PLAN': final_activations = [final_activations[0]] if len(set(final_activations)) == 1 else final_activations # removing if all same
362
368
 
363
369
  if batch_size == 1:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5.23
3
+ Version: 5.24
4
4
  Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,10 +1,10 @@
1
- pyerualjetwork/__init__.py,sha256=qIF9HJ9AxMRQJGKHVldVEvqUGLLxXWsE9a5APx8bdFg,2733
2
- pyerualjetwork/activation_functions_cpu.py,sha256=qP_Ipi2-c5tyJ7Jb9gWJZCj2AgeOIzLBdoEqQOUXD-s,5885
1
+ pyerualjetwork/__init__.py,sha256=te_Axo06B3IYgqH2G2_fhyFIioHFgl2cAMEk4YtmbbM,2733
2
+ pyerualjetwork/activation_functions_cpu.py,sha256=axsVRSjw0GuRB709aBwyaNDgAi2vJBIqmJjTmcsCBBY,5743
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=7ZN54w4VP0MtFh0LjAUHsuPNgVOxrKeqEwa_zNbRp4g,5699
4
4
  pyerualjetwork/data_operations_cpu.py,sha256=HemqiYfSdlQKTTYNzpCh_9lTtS3AimMI4DvqJBAGjGw,16186
5
5
  pyerualjetwork/data_operations_cuda.py,sha256=5zgyJGPjQuHyx6IHNkRwMguYhm-GcI6Hal49WNvw-bM,18536
6
- pyerualjetwork/ene_cpu.py,sha256=EI0GmfSNwfebQ11Qdc8KPD7-Gp7578uWSei5mzdf3pk,45148
7
- pyerualjetwork/ene_cuda.py,sha256=5OvuIlEKnoXlv7AGkWbFLDO0EtN343ZHRpDWwC4KzwQ,45658
6
+ pyerualjetwork/ene_cpu.py,sha256=vM-eGAqkiw4U68VmNDMpC5UAmewc8S876VPoyUDcSl4,45163
7
+ pyerualjetwork/ene_cuda.py,sha256=dWavZydKL9b5BAGL430SuWs1TenMelbFtltoEAXKkJY,45673
8
8
  pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
9
9
  pyerualjetwork/help.py,sha256=FcX8mxo1_mvoqONVXY0Kn7S09CDkhi0jwNmn8g9mYZc,804
10
10
  pyerualjetwork/issue_solver.py,sha256=iY6hSsBxYI5l82RwnXQp2DrRUJyksk_7U9GUSnt2YfU,3117
@@ -15,12 +15,12 @@ pyerualjetwork/metrics_cpu.py,sha256=vbfMwS0ay2heMSa0GNo-ydLjQ8cfexbLwaREp4FKAtY
15
15
  pyerualjetwork/metrics_cuda.py,sha256=PWyJyexeqlPKb09LAcF55JvhZVeXLCu3P_siYq5m2gg,5065
16
16
  pyerualjetwork/model_operations_cpu.py,sha256=Y0uPkLVbdodP7lC-fOPdja3RWi2J9z2rwWIS2pxzotU,20523
17
17
  pyerualjetwork/model_operations_cuda.py,sha256=B6vNYmqvrEJ3ZMGE1RWeJYn3V-JCsXhCHvS-aX4bWuU,21254
18
- pyerualjetwork/neu_cpu.py,sha256=X-AyTRSqBi29c3zxXO0nI2QRVZy8_UGR_nLkW06RCzE,31242
19
- pyerualjetwork/neu_cuda.py,sha256=wrgFSCaQeF6b3Bu7teLjCaYVNT9rdU4mVk3tYSKuG54,32402
18
+ pyerualjetwork/neu_cpu.py,sha256=m3yWWpT00WcrZ0eetmR3BCyZ7b7odsF_EHcwhkTRxM4,31440
19
+ pyerualjetwork/neu_cuda.py,sha256=fT8vx-dqG9HZt0iSQUH3ZzRxBPfkEtvISvBy4Y8vR_M,32580
20
20
  pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
21
21
  pyerualjetwork/visualizations_cpu.py,sha256=StyD1Hl1Gt55EMqR6tO3yVJZdPyGkOgCnQ75Zn8K6J8,28252
22
22
  pyerualjetwork/visualizations_cuda.py,sha256=7lYrkOdrjwQGB3T4k_vI8UDxsm_TRjzaSSg9GhlNczs,28667
23
- pyerualjetwork-5.23.dist-info/METADATA,sha256=ER2rHvFUdwwB8SUtRtV4EaimhnrlHrA1G_6erLB17Rg,8133
24
- pyerualjetwork-5.23.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
25
- pyerualjetwork-5.23.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
26
- pyerualjetwork-5.23.dist-info/RECORD,,
23
+ pyerualjetwork-5.24.dist-info/METADATA,sha256=EPz5rg0iCQtATzhJ33fPi7Pfhwd6ajEpORrTzvRYYaw,8133
24
+ pyerualjetwork-5.24.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
25
+ pyerualjetwork-5.24.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
26
+ pyerualjetwork-5.24.dist-info/RECORD,,