pyerualjetwork 5.22__py3-none-any.whl → 5.24__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/activation_functions_cpu.py +1 -2
- pyerualjetwork/ene_cpu.py +1 -1
- pyerualjetwork/neu_cpu.py +11 -5
- pyerualjetwork/neu_cuda.py +11 -5
- {pyerualjetwork-5.22.dist-info → pyerualjetwork-5.24.dist-info}/METADATA +1 -1
- {pyerualjetwork-5.22.dist-info → pyerualjetwork-5.24.dist-info}/RECORD +9 -9
- {pyerualjetwork-5.22.dist-info → pyerualjetwork-5.24.dist-info}/WHEEL +0 -0
- {pyerualjetwork-5.22.dist-info → pyerualjetwork-5.24.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
|
|
42
42
|
- Contact: tchasancan@gmail.com
|
43
43
|
"""
|
44
44
|
|
45
|
-
__version__ = "5.
|
45
|
+
__version__ = "5.24"
|
46
46
|
__update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
|
47
47
|
* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
|
48
48
|
* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
@@ -6,9 +6,8 @@ import warnings
|
|
6
6
|
# ACTIVATION FUNCTIONS -----
|
7
7
|
|
8
8
|
def all_activations():
|
9
|
-
|
9
|
+
|
10
10
|
activations_list = ['linear', 'sigmoid', 'relu', 'tanh', 'circular', 'spiral', 'sin_plus', 'mod_circular', 'tanh_circular', 'leaky_relu', 'gelu', 'sinakt', 'p_squared', 'sglu', 'dlrelu', 'acos', 'isra', 'waveakt', 'arctan', 'bent_identity', 'softsign', 'pwl', 'sine', 'tanh_square', 'sine_square', 'logarithmic', 'sine_offset']
|
11
|
-
# suggest: tanh, arctan, selu, elu, dlrelu, isra, bent_identity
|
12
11
|
return activations_list
|
13
12
|
|
14
13
|
def spiral_activation(x):
|
pyerualjetwork/ene_cpu.py
CHANGED
@@ -357,7 +357,7 @@ def evolver(weights,
|
|
357
357
|
best_activations = good_activations[-1].copy() if isinstance(good_activations[-1], list) else good_activations[-1]
|
358
358
|
|
359
359
|
|
360
|
-
###
|
360
|
+
### ENE IS APPLIED ACCORDING TO THE SPECIFIED POLICY, STRATEGY, AND PROBABILITY CONFIGURATION:
|
361
361
|
|
362
362
|
bar_format = loading_bars()[0]
|
363
363
|
|
pyerualjetwork/neu_cpu.py
CHANGED
@@ -340,13 +340,19 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
|
|
340
340
|
|
341
341
|
if fitness >= best_fitness:
|
342
342
|
|
343
|
-
best_fitness =
|
344
|
-
best_acc =
|
345
|
-
best_loss =
|
343
|
+
best_fitness = fitness
|
344
|
+
best_acc = acc
|
345
|
+
best_loss = train_loss
|
346
346
|
best_weight = np.copy(weight_pop[j]) if model_type == 'PLAN' else copy.deepcopy(weight_pop[j])
|
347
|
-
best_model =
|
347
|
+
best_model = model
|
348
348
|
|
349
|
-
|
349
|
+
if isinstance(act_pop[j], list) and model_type == 'PLAN':
|
350
|
+
final_activations = act_pop[j].copy()
|
351
|
+
elif isinstance(act_pop[j], str):
|
352
|
+
final_activations = act_pop[j]
|
353
|
+
else:
|
354
|
+
final_activations = copy.deepcopy(act_pop[j])
|
355
|
+
|
350
356
|
if model_type == 'PLAN': final_activations = [final_activations[0]] if len(set(final_activations)) == 1 else final_activations # removing if all same
|
351
357
|
|
352
358
|
if batch_size == 1:
|
pyerualjetwork/neu_cuda.py
CHANGED
@@ -351,13 +351,19 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
|
|
351
351
|
|
352
352
|
if fitness >= best_fitness:
|
353
353
|
|
354
|
-
best_fitness =
|
355
|
-
best_acc =
|
356
|
-
best_loss =
|
354
|
+
best_fitness = fitness
|
355
|
+
best_acc = acc
|
356
|
+
best_loss = train_loss
|
357
357
|
best_weight = cp.copy(weight_pop[j]) if model_type == 'PLAN' else copy.deepcopy(weight_pop[j])
|
358
|
-
best_model =
|
358
|
+
best_model = model
|
359
|
+
|
360
|
+
if isinstance(act_pop[j], list) and model_type == 'PLAN':
|
361
|
+
final_activations = act_pop[j].copy()
|
362
|
+
elif isinstance(act_pop[j], str):
|
363
|
+
final_activations = act_pop[j]
|
364
|
+
else:
|
365
|
+
final_activations = copy.deepcopy(act_pop[j])
|
359
366
|
|
360
|
-
final_activations = act_pop[j].copy() if isinstance(act_pop[j], list) else act_pop[j]
|
361
367
|
if model_type == 'PLAN': final_activations = [final_activations[0]] if len(set(final_activations)) == 1 else final_activations # removing if all same
|
362
368
|
|
363
369
|
if batch_size == 1:
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 5.
|
3
|
+
Version: 5.24
|
4
4
|
Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,9 +1,9 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
2
|
-
pyerualjetwork/activation_functions_cpu.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=te_Axo06B3IYgqH2G2_fhyFIioHFgl2cAMEk4YtmbbM,2733
|
2
|
+
pyerualjetwork/activation_functions_cpu.py,sha256=axsVRSjw0GuRB709aBwyaNDgAi2vJBIqmJjTmcsCBBY,5743
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=7ZN54w4VP0MtFh0LjAUHsuPNgVOxrKeqEwa_zNbRp4g,5699
|
4
4
|
pyerualjetwork/data_operations_cpu.py,sha256=HemqiYfSdlQKTTYNzpCh_9lTtS3AimMI4DvqJBAGjGw,16186
|
5
5
|
pyerualjetwork/data_operations_cuda.py,sha256=5zgyJGPjQuHyx6IHNkRwMguYhm-GcI6Hal49WNvw-bM,18536
|
6
|
-
pyerualjetwork/ene_cpu.py,sha256=
|
6
|
+
pyerualjetwork/ene_cpu.py,sha256=vM-eGAqkiw4U68VmNDMpC5UAmewc8S876VPoyUDcSl4,45163
|
7
7
|
pyerualjetwork/ene_cuda.py,sha256=dWavZydKL9b5BAGL430SuWs1TenMelbFtltoEAXKkJY,45673
|
8
8
|
pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
|
9
9
|
pyerualjetwork/help.py,sha256=FcX8mxo1_mvoqONVXY0Kn7S09CDkhi0jwNmn8g9mYZc,804
|
@@ -15,12 +15,12 @@ pyerualjetwork/metrics_cpu.py,sha256=vbfMwS0ay2heMSa0GNo-ydLjQ8cfexbLwaREp4FKAtY
|
|
15
15
|
pyerualjetwork/metrics_cuda.py,sha256=PWyJyexeqlPKb09LAcF55JvhZVeXLCu3P_siYq5m2gg,5065
|
16
16
|
pyerualjetwork/model_operations_cpu.py,sha256=Y0uPkLVbdodP7lC-fOPdja3RWi2J9z2rwWIS2pxzotU,20523
|
17
17
|
pyerualjetwork/model_operations_cuda.py,sha256=B6vNYmqvrEJ3ZMGE1RWeJYn3V-JCsXhCHvS-aX4bWuU,21254
|
18
|
-
pyerualjetwork/neu_cpu.py,sha256=
|
19
|
-
pyerualjetwork/neu_cuda.py,sha256=
|
18
|
+
pyerualjetwork/neu_cpu.py,sha256=m3yWWpT00WcrZ0eetmR3BCyZ7b7odsF_EHcwhkTRxM4,31440
|
19
|
+
pyerualjetwork/neu_cuda.py,sha256=fT8vx-dqG9HZt0iSQUH3ZzRxBPfkEtvISvBy4Y8vR_M,32580
|
20
20
|
pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
21
21
|
pyerualjetwork/visualizations_cpu.py,sha256=StyD1Hl1Gt55EMqR6tO3yVJZdPyGkOgCnQ75Zn8K6J8,28252
|
22
22
|
pyerualjetwork/visualizations_cuda.py,sha256=7lYrkOdrjwQGB3T4k_vI8UDxsm_TRjzaSSg9GhlNczs,28667
|
23
|
-
pyerualjetwork-5.
|
24
|
-
pyerualjetwork-5.
|
25
|
-
pyerualjetwork-5.
|
26
|
-
pyerualjetwork-5.
|
23
|
+
pyerualjetwork-5.24.dist-info/METADATA,sha256=EPz5rg0iCQtATzhJ33fPi7Pfhwd6ajEpORrTzvRYYaw,8133
|
24
|
+
pyerualjetwork-5.24.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
25
|
+
pyerualjetwork-5.24.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
26
|
+
pyerualjetwork-5.24.dist-info/RECORD,,
|
File without changes
|
File without changes
|