pyerualjetwork 5.21b1__py3-none-any.whl → 5.21b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
42
42
  - Contact: tchasancan@gmail.com
43
43
  """
44
44
 
45
- __version__ = "5.21b1"
45
+ __version__ = "5.21b2"
46
46
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
47
47
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
48
48
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
@@ -198,16 +198,10 @@ def apply_activation(Input, activation_list):
198
198
  'spiral': spiral_activation,
199
199
  'circular': circular_activation
200
200
  }
201
-
202
- try:
203
-
204
- valid_mask = cp.array([act in activation_functions for act in activation_list])
205
- valid_activations = cp.array(activation_list)[valid_mask]
206
201
 
207
- activation_outputs = cp.array([activation_functions[act](origin_input) for act in valid_activations])
202
+ valid_mask = cp.array([act in activation_functions for act in activation_list])
203
+ valid_activations = cp.array(activation_list)[valid_mask]
208
204
 
209
- return cp.sum(activation_outputs, axis=0)
210
-
211
- except Exception as e:
212
- warnings.warn(f"Error in activation processing: {str(e)}", RuntimeWarning)
213
- return Input
205
+ activation_outputs = cp.array([activation_functions[act](origin_input) for act in valid_activations])
206
+
207
+ return cp.sum(activation_outputs, axis=0)
pyerualjetwork/neu_cpu.py CHANGED
@@ -451,9 +451,8 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
451
451
  if model_type == 'PLAN': weight_pop = np.array(weight_pop, copy=False, dtype=dtype)
452
452
  else: weight_pop = np.array(weight_pop, copy=False, dtype=object)
453
453
 
454
- if i != gen-1:
455
- weight_pop, act_pop = optimizer(weight_pop, act_pop, i, np.array(target_pop, dtype=dtype, copy=False), weight_evolve=weight_evolve, is_mlp=is_mlp, bar_status=False)
456
- target_pop = []
454
+ weight_pop, act_pop = optimizer(weight_pop, act_pop, i, np.array(target_pop, dtype=dtype, copy=False), weight_evolve=weight_evolve, is_mlp=is_mlp, bar_status=False)
455
+ target_pop = []
457
456
 
458
457
  # Early stopping check
459
458
  if early_stop == True and i > 0:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5.21b1
3
+ Version: 5.21b2
4
4
  Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,6 +1,6 @@
1
- pyerualjetwork/__init__.py,sha256=tK8CuteecFXRuBe8BkUz-7b1d6zCwndH-pO2k-2zSrk,2735
1
+ pyerualjetwork/__init__.py,sha256=Bb361xO4qf2P0ZPTQ_s7Oz2fz70cUFuixDWLCfuqUGs,2735
2
2
  pyerualjetwork/activation_functions_cpu.py,sha256=qP_Ipi2-c5tyJ7Jb9gWJZCj2AgeOIzLBdoEqQOUXD-s,5885
3
- pyerualjetwork/activation_functions_cuda.py,sha256=IJAqlbVdE01MrtOCX8TvxkGmqqhEcr1p9qozy0Sjpjw,5673
3
+ pyerualjetwork/activation_functions_cuda.py,sha256=tjizlWkpXlA5DR8yD5CGI1b6j2yCn8vdrMrUMm6_r8I,5491
4
4
  pyerualjetwork/data_operations_cpu.py,sha256=HemqiYfSdlQKTTYNzpCh_9lTtS3AimMI4DvqJBAGjGw,16186
5
5
  pyerualjetwork/data_operations_cuda.py,sha256=5zgyJGPjQuHyx6IHNkRwMguYhm-GcI6Hal49WNvw-bM,18536
6
6
  pyerualjetwork/ene_cpu.py,sha256=2y5__d-vx7t5Ajs4IPuNnQe8ULR39Km_KQFNIUnalGA,45167
@@ -15,12 +15,12 @@ pyerualjetwork/metrics_cpu.py,sha256=vbfMwS0ay2heMSa0GNo-ydLjQ8cfexbLwaREp4FKAtY
15
15
  pyerualjetwork/metrics_cuda.py,sha256=PWyJyexeqlPKb09LAcF55JvhZVeXLCu3P_siYq5m2gg,5065
16
16
  pyerualjetwork/model_operations_cpu.py,sha256=Y0uPkLVbdodP7lC-fOPdja3RWi2J9z2rwWIS2pxzotU,20523
17
17
  pyerualjetwork/model_operations_cuda.py,sha256=9KfaO3NwvA-bwZqshYQwfc5e-4AYPp53EwFHMvDHS3I,21537
18
- pyerualjetwork/neu_cpu.py,sha256=hmzfPC3BysPakn2kx5OEU8MCjxBPCq57q7oTuUoAVCI,31229
18
+ pyerualjetwork/neu_cpu.py,sha256=4jjW9xIuB5WKJRMAR0BgkUra3OYERfUhehbqeYFgiIA,31197
19
19
  pyerualjetwork/neu_cuda.py,sha256=nK74JgfyJDbaPmSR1CmtZc_PaSKk0FeFmNcWHe5-8U0,32354
20
20
  pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
21
21
  pyerualjetwork/visualizations_cpu.py,sha256=StyD1Hl1Gt55EMqR6tO3yVJZdPyGkOgCnQ75Zn8K6J8,28252
22
22
  pyerualjetwork/visualizations_cuda.py,sha256=7lYrkOdrjwQGB3T4k_vI8UDxsm_TRjzaSSg9GhlNczs,28667
23
- pyerualjetwork-5.21b1.dist-info/METADATA,sha256=ljIVoEAC1jduKQllgsT1aQGQmtNpBREmd4R44AUafNE,8135
24
- pyerualjetwork-5.21b1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
25
- pyerualjetwork-5.21b1.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
26
- pyerualjetwork-5.21b1.dist-info/RECORD,,
23
+ pyerualjetwork-5.21b2.dist-info/METADATA,sha256=DZtpe6d-BdbHuvL8Ec02KK6SQKN0RzwBgR2Lo0DQ2Bg,8135
24
+ pyerualjetwork-5.21b2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
25
+ pyerualjetwork-5.21b2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
26
+ pyerualjetwork-5.21b2.dist-info/RECORD,,