pyerualjetwork 5.1__py3-none-any.whl → 5.21__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -42,7 +42,7 @@ PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welco
42
42
  - Contact: tchasancan@gmail.com
43
43
  """
44
44
 
45
- __version__ = "5.1"
45
+ __version__ = "5.21"
46
46
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
47
47
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
48
48
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
@@ -1,4 +1,5 @@
1
1
  import cupy as cp
2
+ import numpy as np
2
3
  from scipy.special import expit, softmax
3
4
  import warnings
4
5
 
@@ -202,7 +203,7 @@ def apply_activation(Input, activation_list):
202
203
  try:
203
204
 
204
205
  valid_mask = cp.array([act in activation_functions for act in activation_list])
205
- valid_activations = cp.array(activation_list)[valid_mask]
206
+ valid_activations = np.array(activation_list)[valid_mask.get()]
206
207
 
207
208
  activation_outputs = cp.array([activation_functions[act](origin_input) for act in valid_activations])
208
209
 
@@ -14,4 +14,3 @@ def wals(acc, loss, acc_impact, loss_impact):
14
14
  loss_impact += np.finfo(float).eps
15
15
 
16
16
  return (acc * acc_impact) + ((loss_impact / loss) * loss_impact)
17
- import __init__
@@ -536,51 +536,46 @@ def predict_from_memory(Input, W, scaler_params=None, activations=['linear'], ac
536
536
  from .data_operations_cuda import standard_scaler
537
537
  from .activation_functions_cuda import apply_activation
538
538
 
539
- try:
540
-
541
- if isinstance(activations, str):
542
- activations = [activations]
543
- elif isinstance(activations, list):
544
- activations = [item if isinstance(item, list) or isinstance(item, str) else [item] for item in activations]
539
+ if isinstance(activations, str):
540
+ activations = [activations]
541
+ elif isinstance(activations, list):
542
+ activations = [item if isinstance(item, list) or isinstance(item, str) else [item] for item in activations]
545
543
 
546
- Input = standard_scaler(None, Input, scaler_params)
544
+ Input = standard_scaler(None, Input, scaler_params)
547
545
 
548
- if model_type == 'MLP':
549
- layer = Input
550
- for i in range(len(W)):
551
- if i != len(W) - 1 and i != 0: layer = apply_activation(layer, activations[i])
546
+ if model_type == 'MLP':
547
+ layer = Input
548
+ for i in range(len(W)):
549
+ if i != len(W) - 1 and i != 0: layer = apply_activation(layer, activations[i])
552
550
 
553
- layer = layer @ W[i].T
551
+ layer = layer @ W[i].T
554
552
 
555
- result = layer
553
+ result = layer
556
554
 
557
- if model_type == 'PLAN':
555
+ if model_type == 'PLAN':
558
556
 
559
- Input = apply_activation(Input, activations)
560
- result = Input @ W.T
561
-
562
- if model_type == 'PTNN':
557
+ Input = apply_activation(Input, activations)
558
+ result = Input @ W.T
559
+
560
+ if model_type == 'PTNN':
563
561
 
564
- if isinstance(activation_potentiation, str):
565
- activation_potentiation = [activation_potentiation]
566
- elif isinstance(activation_potentiation, list):
567
- activation_potentiation = [item if isinstance(item, list) or isinstance(item, str) else [item] for item in activation_potentiation]
562
+ if isinstance(activation_potentiation, str):
563
+ activation_potentiation = [activation_potentiation]
564
+ elif isinstance(activation_potentiation, list):
565
+ activation_potentiation = [item if isinstance(item, list) or isinstance(item, str) else [item] for item in activation_potentiation]
568
566
 
569
- Input = apply_activation(Input, activation_potentiation)
570
- layer = Input @ W[0].T
567
+ Input = apply_activation(Input, activation_potentiation)
568
+ layer = Input @ W[0].T
571
569
 
572
- for i in range(1, len(W)):
573
- if i != len(W) - 1: layer = apply_activation(layer, activations[i])
570
+ for i in range(1, len(W)):
571
+ if i != len(W) - 1: layer = apply_activation(layer, activations[i])
574
572
 
575
- layer = layer @ W[i].T
573
+ layer = layer @ W[i].T
576
574
 
577
- result = layer
575
+ result = layer
578
576
 
579
- return result
577
+ return result
580
578
 
581
- except:
582
- print(Fore.RED + "ERROR: Unexpected input or wrong model parameters from: predict_model_ram." + Style.RESET_ALL)
583
- sys.exit()
584
579
 
585
580
 
586
581
  def reverse_predict_from_memory(output, W, dtype=cp.float32):
pyerualjetwork/neu_cpu.py CHANGED
@@ -135,7 +135,7 @@ def learn(x_train, y_train, optimizer, gen, pop_size, fit_start=True, batch_size
135
135
  :Args:
136
136
  :param x_train: (array-like): Training input data.
137
137
  :param y_train: (array-like): Labels for training data. one-hot encoded.
138
- :param optimizer: (function): Optimization technique with hyperparameters. (PLAN, MLP & PTNN (all) using ENE for optimization. Gradient based technique's will added in the future.) Please use this: from pyerualjetwork.ene_cpu import evolver (and) optimizer = lambda *args, **kwargs: evolver(*args, 'here give your neat hyperparameters for example: activation_add_prob=0.85', **kwargs) Example:
138
+ :param optimizer: (function): Optimization technique with hyperparameters. (PLAN, MLP & PTNN (all) using ENE for optimization. Gradient based technique's will added in the future.) Please use this: from pyerualjetwork.ene_cpu import evolver (and) optimizer = lambda *args, **kwargs: evolver(*args, 'here give your hyperparameters for example: activation_add_prob=0.85', **kwargs) Example:
139
139
  ```python
140
140
  optimizer = lambda *args, **kwargs: ene_cpu.evolver(*args,
141
141
  activation_add_prob=0.05,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 5.1
3
+ Version: 5.21
4
4
  Summary: PyereualJetwork is a GPU-accelerated machine learning library in Python for professionals and researchers. It features PLAN, MLP, Deep Learning training, and ENE (Eugenic NeuroEvolution) for genetic optimization, applicable to genetic algorithms or Reinforcement Learning (RL). The library includes data pre-processing, visualizations, model saving/loading, prediction, evaluation, training, and detailed or simplified memory management.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,11 +1,11 @@
1
- pyerualjetwork/__init__.py,sha256=IwEIh3pG8VOF-x3j5zczYZoFU0sAPskLx74yLtbhuik,2732
1
+ pyerualjetwork/__init__.py,sha256=OolhIDrjmWskLnJsciEgQ_KSOHxkk_Y0vUk_wYuA-jE,2733
2
2
  pyerualjetwork/activation_functions_cpu.py,sha256=qP_Ipi2-c5tyJ7Jb9gWJZCj2AgeOIzLBdoEqQOUXD-s,5885
3
- pyerualjetwork/activation_functions_cuda.py,sha256=IJAqlbVdE01MrtOCX8TvxkGmqqhEcr1p9qozy0Sjpjw,5673
3
+ pyerualjetwork/activation_functions_cuda.py,sha256=7ZN54w4VP0MtFh0LjAUHsuPNgVOxrKeqEwa_zNbRp4g,5699
4
4
  pyerualjetwork/data_operations_cpu.py,sha256=HemqiYfSdlQKTTYNzpCh_9lTtS3AimMI4DvqJBAGjGw,16186
5
5
  pyerualjetwork/data_operations_cuda.py,sha256=5zgyJGPjQuHyx6IHNkRwMguYhm-GcI6Hal49WNvw-bM,18536
6
6
  pyerualjetwork/ene_cpu.py,sha256=2y5__d-vx7t5Ajs4IPuNnQe8ULR39Km_KQFNIUnalGA,45167
7
7
  pyerualjetwork/ene_cuda.py,sha256=dWavZydKL9b5BAGL430SuWs1TenMelbFtltoEAXKkJY,45673
8
- pyerualjetwork/fitness_functions.py,sha256=pUmAbUy5ex1Vpu6n_RRac_df-FR52gYIV8uxYS5H3tw,1252
8
+ pyerualjetwork/fitness_functions.py,sha256=D9JVCr9DFid_xXgBD4uCKxdW2k10MVDE5HZRSOK4Igg,1237
9
9
  pyerualjetwork/help.py,sha256=FcX8mxo1_mvoqONVXY0Kn7S09CDkhi0jwNmn8g9mYZc,804
10
10
  pyerualjetwork/issue_solver.py,sha256=iY6hSsBxYI5l82RwnXQp2DrRUJyksk_7U9GUSnt2YfU,3117
11
11
  pyerualjetwork/loss_functions_cpu.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
@@ -14,13 +14,13 @@ pyerualjetwork/memory_operations.py,sha256=g24d-cDuUFc0fOEtk3AJe-z_EBctYV5S4cY1r
14
14
  pyerualjetwork/metrics_cpu.py,sha256=vbfMwS0ay2heMSa0GNo-ydLjQ8cfexbLwaREp4FKAtY,6081
15
15
  pyerualjetwork/metrics_cuda.py,sha256=PWyJyexeqlPKb09LAcF55JvhZVeXLCu3P_siYq5m2gg,5065
16
16
  pyerualjetwork/model_operations_cpu.py,sha256=Y0uPkLVbdodP7lC-fOPdja3RWi2J9z2rwWIS2pxzotU,20523
17
- pyerualjetwork/model_operations_cuda.py,sha256=9KfaO3NwvA-bwZqshYQwfc5e-4AYPp53EwFHMvDHS3I,21537
18
- pyerualjetwork/neu_cpu.py,sha256=C9nNzMaan8-QyUK6gXTM_PQiSb4cBEpbM-WMLGbuDDY,31202
17
+ pyerualjetwork/model_operations_cuda.py,sha256=B6vNYmqvrEJ3ZMGE1RWeJYn3V-JCsXhCHvS-aX4bWuU,21254
18
+ pyerualjetwork/neu_cpu.py,sha256=4jjW9xIuB5WKJRMAR0BgkUra3OYERfUhehbqeYFgiIA,31197
19
19
  pyerualjetwork/neu_cuda.py,sha256=nK74JgfyJDbaPmSR1CmtZc_PaSKk0FeFmNcWHe5-8U0,32354
20
20
  pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
21
21
  pyerualjetwork/visualizations_cpu.py,sha256=StyD1Hl1Gt55EMqR6tO3yVJZdPyGkOgCnQ75Zn8K6J8,28252
22
22
  pyerualjetwork/visualizations_cuda.py,sha256=7lYrkOdrjwQGB3T4k_vI8UDxsm_TRjzaSSg9GhlNczs,28667
23
- pyerualjetwork-5.1.dist-info/METADATA,sha256=aYILBPyOZMu50jTsmu22UVYh6DMToxX_XdhPF720RQw,8132
24
- pyerualjetwork-5.1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
25
- pyerualjetwork-5.1.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
26
- pyerualjetwork-5.1.dist-info/RECORD,,
23
+ pyerualjetwork-5.21.dist-info/METADATA,sha256=mqDRsgybJuNDivw4CkyF7wV2utp_JZX-ISvbwNkI15Y,8133
24
+ pyerualjetwork-5.21.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
25
+ pyerualjetwork-5.21.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
26
+ pyerualjetwork-5.21.dist-info/RECORD,,