pyerualjetwork 4.6.7__py3-none-any.whl → 4.6.8b0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/activation_functions.py +2 -2
- pyerualjetwork/activation_functions_cuda.py +2 -6
- pyerualjetwork/data_operations.py +8 -6
- pyerualjetwork/data_operations_cuda.py +8 -6
- pyerualjetwork/model_operations.py +36 -21
- pyerualjetwork/model_operations_cuda.py +32 -15
- pyerualjetwork/plan.py +5 -0
- pyerualjetwork/plan_cuda.py +5 -0
- {pyerualjetwork-4.6.7.dist-info → pyerualjetwork-4.6.8b0.dist-info}/METADATA +1 -1
- pyerualjetwork-4.6.8b0.dist-info/RECORD +25 -0
- pyerualjetwork-4.6.7.dist-info/RECORD +0 -25
- {pyerualjetwork-4.6.7.dist-info → pyerualjetwork-4.6.8b0.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.6.7.dist-info → pyerualjetwork-4.6.8b0.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.6.
|
1
|
+
__version__ = "4.6.8b0"
|
2
2
|
__update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
|
3
3
|
* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
|
4
4
|
* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
@@ -7,7 +7,7 @@ import warnings
|
|
7
7
|
|
8
8
|
def all_activations():
|
9
9
|
|
10
|
-
activations_list = ['linear', 'sigmoid', 'relu', 'tanh', 'circular', 'spiral', 'swish', 'sin_plus', 'mod_circular', 'tanh_circular', 'leaky_relu', 'softplus', 'elu', 'gelu', 'selu', 'sinakt', 'p_squared', 'sglu', 'dlrelu', 'exsig', 'acos', 'gla', 'srelu', 'qelu', 'isra', 'waveakt', 'arctan', 'bent_identity', 'sech', 'softsign', 'pwl', 'cubic', 'gaussian', 'sine', 'tanh_square', 'mod_sigmoid', 'quartic', 'square_quartic', 'cubic_quadratic', '
|
10
|
+
activations_list = ['linear', 'sigmoid', 'relu', 'tanh', 'circular', 'spiral', 'swish', 'sin_plus', 'mod_circular', 'tanh_circular', 'leaky_relu', 'softplus', 'elu', 'gelu', 'selu', 'sinakt', 'p_squared', 'sglu', 'dlrelu', 'exsig', 'acos', 'gla', 'srelu', 'qelu', 'isra', 'waveakt', 'arctan', 'bent_identity', 'sech', 'softsign', 'pwl', 'cubic', 'gaussian', 'sine', 'tanh_square', 'mod_sigmoid', 'quartic', 'square_quartic', 'cubic_quadratic', 'sine_square', 'logarithmic', 'scaled_cubic', 'sine_offset']
|
11
11
|
|
12
12
|
return activations_list
|
13
13
|
|
@@ -279,7 +279,7 @@ def apply_activation(Input, activation_list):
|
|
279
279
|
|
280
280
|
activation_outputs = np.array([activation_functions[act](origin_input) for act in valid_activations])
|
281
281
|
|
282
|
-
return
|
282
|
+
return np.sum(activation_outputs, axis=0)
|
283
283
|
|
284
284
|
except Exception as e:
|
285
285
|
warnings.warn(f"Error in activation processing: {str(e)}", RuntimeWarning)
|
@@ -6,7 +6,7 @@ import warnings
|
|
6
6
|
|
7
7
|
def all_activations():
|
8
8
|
|
9
|
-
activations_list = ['linear', 'sigmoid', 'relu', 'tanh', 'circular', 'spiral', 'swish', 'sin_plus', 'mod_circular', 'tanh_circular', 'leaky_relu', 'softplus', 'elu', 'gelu', 'selu', 'sinakt', 'p_squared', 'sglu', 'dlrelu', 'exsig', 'acos', 'gla', 'srelu', 'qelu', 'isra', 'waveakt', 'arctan', 'bent_identity', 'sech', 'softsign', 'pwl', 'cubic', 'gaussian', 'sine', 'tanh_square', 'mod_sigmoid', 'quartic', 'square_quartic', 'cubic_quadratic', '
|
9
|
+
activations_list = ['linear', 'sigmoid', 'relu', 'tanh', 'circular', 'spiral', 'swish', 'sin_plus', 'mod_circular', 'tanh_circular', 'leaky_relu', 'softplus', 'elu', 'gelu', 'selu', 'sinakt', 'p_squared', 'sglu', 'dlrelu', 'exsig', 'acos', 'gla', 'srelu', 'qelu', 'isra', 'waveakt', 'arctan', 'bent_identity', 'sech', 'softsign', 'pwl', 'cubic', 'gaussian', 'sine', 'tanh_square', 'mod_sigmoid', 'quartic', 'square_quartic', 'cubic_quadratic', 'sine_square', 'logarithmic', 'scaled_cubic', 'sine_offset']
|
10
10
|
|
11
11
|
return activations_list
|
12
12
|
|
@@ -202,9 +202,6 @@ def square_quartic(x):
|
|
202
202
|
def cubic_quadratic(x):
|
203
203
|
return x**3 * (x**2)
|
204
204
|
|
205
|
-
def exp_cubic(x):
|
206
|
-
return cp.exp(x**3)
|
207
|
-
|
208
205
|
def sine_square(x):
|
209
206
|
return cp.sin(x)**2
|
210
207
|
|
@@ -266,7 +263,6 @@ def apply_activation(Input, activation_list):
|
|
266
263
|
'quartic': quartic,
|
267
264
|
'square_quartic': square_quartic,
|
268
265
|
'cubic_quadratic': cubic_quadratic,
|
269
|
-
'exp_cubic': exp_cubic,
|
270
266
|
'sine_square': sine_square,
|
271
267
|
'logarithmic': logarithmic,
|
272
268
|
'scaled_cubic': lambda x: scaled_cubic(x, 1.0),
|
@@ -282,7 +278,7 @@ def apply_activation(Input, activation_list):
|
|
282
278
|
|
283
279
|
activation_outputs = cp.array([activation_functions[act](origin_input) for act in valid_activations])
|
284
280
|
|
285
|
-
return
|
281
|
+
return cp.sum(activation_outputs, axis=0)
|
286
282
|
|
287
283
|
except Exception as e:
|
288
284
|
warnings.warn(f"Error in activation processing: {str(e)}", RuntimeWarning)
|
@@ -379,22 +379,24 @@ dtype=np.float32):
|
|
379
379
|
|
380
380
|
|
381
381
|
def non_neg_normalization(
|
382
|
-
Input,
|
382
|
+
Input,
|
383
383
|
dtype=np.float32
|
384
384
|
):
|
385
385
|
"""
|
386
386
|
Normalizes the input data [0-1] range.
|
387
|
-
|
388
387
|
Args:
|
389
388
|
Input (numpy): Input data to be normalized.
|
390
|
-
|
391
|
-
dtype (numpy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16.
|
392
|
-
|
389
|
+
dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16.
|
393
390
|
Returns:
|
394
391
|
(numpy) Scaled input data after normalization.
|
395
392
|
"""
|
393
|
+
Input = Input.astype(dtype, copy=False)
|
394
|
+
MaxAbs = np.max(np.abs(Input))
|
396
395
|
|
397
|
-
|
396
|
+
if np.all(Input == Input.flat[0]):
|
397
|
+
randomization = np.random.random(Input.shape).astype(dtype)
|
398
|
+
return randomization
|
399
|
+
|
398
400
|
return (Input + MaxAbs) / (2 * MaxAbs)
|
399
401
|
|
400
402
|
|
@@ -420,22 +420,24 @@ def normalization(
|
|
420
420
|
|
421
421
|
|
422
422
|
def non_neg_normalization(
|
423
|
-
Input,
|
424
|
-
dtype=
|
423
|
+
Input,
|
424
|
+
dtype=np.float32
|
425
425
|
):
|
426
426
|
"""
|
427
427
|
Normalizes the input data [0-1] range.
|
428
|
-
|
429
428
|
Args:
|
430
429
|
Input (cupy): Input data to be normalized.
|
431
|
-
|
432
430
|
dtype (cupy.dtype): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16.
|
433
|
-
|
434
431
|
Returns:
|
435
432
|
(cupy) Scaled input data after normalization.
|
436
433
|
"""
|
434
|
+
Input = Input.astype(dtype, copy=False)
|
435
|
+
MaxAbs = cp.max(cp.abs(Input))
|
437
436
|
|
438
|
-
|
437
|
+
if cp.all(Input == Input.flat[0]):
|
438
|
+
randomization = cp.random.random(Input.shape).astype(dtype)
|
439
|
+
return randomization
|
440
|
+
|
439
441
|
return (Input + MaxAbs) / (2 * MaxAbs)
|
440
442
|
|
441
443
|
|
@@ -55,6 +55,13 @@ def save_model(model_name,
|
|
55
55
|
if model_type != 'PLAN' and model_type != 'MLP':
|
56
56
|
raise ValueError("model_type parameter must be 'PLAN' or 'MLP'.")
|
57
57
|
|
58
|
+
if isinstance(activation_potentiation, str):
|
59
|
+
activation_potentiation = [activation_potentiation]
|
60
|
+
else:
|
61
|
+
activation_potentiation = [item if isinstance(item, list) else [item] for item in activation_potentiation]
|
62
|
+
|
63
|
+
activation = activation_potentiation.copy()
|
64
|
+
|
58
65
|
if test_acc != None:
|
59
66
|
test_acc= float(test_acc)
|
60
67
|
|
@@ -82,6 +89,7 @@ def save_model(model_name,
|
|
82
89
|
sys.exit()
|
83
90
|
|
84
91
|
elif model_type == 'MLP':
|
92
|
+
|
85
93
|
class_count = W[-1].shape[0]
|
86
94
|
|
87
95
|
NeuronCount.append(np.shape(W[0])[1])
|
@@ -95,33 +103,34 @@ def save_model(model_name,
|
|
95
103
|
print(Fore.RED + "ERROR: Weight matrices have a problem from: save_model" + Style.RESET_ALL)
|
96
104
|
sys.exit()
|
97
105
|
|
106
|
+
|
98
107
|
SynapseCount.append(' ')
|
99
108
|
|
100
|
-
|
101
|
-
|
109
|
+
activation.append('')
|
110
|
+
activation.insert(0, '')
|
102
111
|
|
103
|
-
if
|
104
|
-
|
105
|
-
|
112
|
+
if len(activation) == 1 and model_type == 'PLAN':
|
113
|
+
activation = [activation]
|
114
|
+
activation.append('')
|
106
115
|
|
107
|
-
if len(
|
108
|
-
for i in range(len(
|
116
|
+
if len(activation) > len(NeuronCount):
|
117
|
+
for i in range(len(activation) - len(NeuronCount)):
|
109
118
|
NeuronCount.append('')
|
110
|
-
|
111
|
-
if len(
|
112
|
-
for i in range(len(
|
119
|
+
|
120
|
+
if len(activation) > len(SynapseCount):
|
121
|
+
for i in range(len(activation) - len(SynapseCount)):
|
113
122
|
SynapseCount.append('')
|
114
123
|
|
115
124
|
|
116
125
|
if scaler_params != None:
|
117
126
|
|
118
|
-
if len(scaler_params) > len(
|
127
|
+
if len(scaler_params) > len(activation):
|
119
128
|
|
120
|
-
|
129
|
+
activation += ['']
|
121
130
|
|
122
|
-
elif len(
|
131
|
+
elif len(activation) > len(scaler_params):
|
123
132
|
|
124
|
-
for i in range(len(
|
133
|
+
for i in range(len(activation) - len(scaler_params)):
|
125
134
|
|
126
135
|
scaler_params.append(' ')
|
127
136
|
|
@@ -136,7 +145,7 @@ def save_model(model_name,
|
|
136
145
|
'WEIGHTS FORMAT': weights_format,
|
137
146
|
'MODEL PATH': model_path,
|
138
147
|
'STANDARD SCALER': scaler_params,
|
139
|
-
'ACTIVATION POTENTIATION':
|
148
|
+
'ACTIVATION POTENTIATION': activation
|
140
149
|
}
|
141
150
|
|
142
151
|
df = pd.DataFrame(data)
|
@@ -305,6 +314,11 @@ def predict_model_ssd(Input, model_name, model_path='', dtype=np.float32):
|
|
305
314
|
W = model[get_weights()]
|
306
315
|
model_type = model[get_model_type()]
|
307
316
|
|
317
|
+
if isinstance(activation_potentiation, str):
|
318
|
+
activation_potentiation = [activation_potentiation]
|
319
|
+
else:
|
320
|
+
activation_potentiation = [item if isinstance(item, list) else [item] for item in activation_potentiation]
|
321
|
+
|
308
322
|
Input = standard_scaler(None, Input, scaler_params)
|
309
323
|
|
310
324
|
if model_type == 'MLP':
|
@@ -328,7 +342,7 @@ def predict_model_ssd(Input, model_name, model_path='', dtype=np.float32):
|
|
328
342
|
sys.exit()
|
329
343
|
|
330
344
|
|
331
|
-
def reverse_predict_model_ssd(output, model_name, model_path=''
|
345
|
+
def reverse_predict_model_ssd(output, model_name, model_path=''):
|
332
346
|
|
333
347
|
"""
|
334
348
|
reverse prediction function from storage
|
@@ -340,8 +354,6 @@ def reverse_predict_model_ssd(output, model_name, model_path='', dtype=np.float3
|
|
340
354
|
|
341
355
|
model_path (str): Path of the model. Default: ''
|
342
356
|
|
343
|
-
dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!]
|
344
|
-
|
345
357
|
Returns:
|
346
358
|
ndarray: Input from the model.
|
347
359
|
"""
|
@@ -386,6 +398,11 @@ def predict_model_ram(Input, W, scaler_params=None, activation_potentiation=['li
|
|
386
398
|
|
387
399
|
Input = standard_scaler(None, Input, scaler_params)
|
388
400
|
|
401
|
+
if isinstance(activation_potentiation, str):
|
402
|
+
activation_potentiation = [activation_potentiation]
|
403
|
+
else:
|
404
|
+
activation_potentiation = [item if isinstance(item, list) else [item] for item in activation_potentiation]
|
405
|
+
|
389
406
|
if is_mlp:
|
390
407
|
|
391
408
|
layer = Input
|
@@ -406,7 +423,7 @@ def predict_model_ram(Input, W, scaler_params=None, activation_potentiation=['li
|
|
406
423
|
print(Fore.RED + "ERROR: Unexpected input or wrong model parameters from: predict_model_ram." + Style.RESET_ALL)
|
407
424
|
sys.exit()
|
408
425
|
|
409
|
-
def reverse_predict_model_ram(output, W
|
426
|
+
def reverse_predict_model_ram(output, W):
|
410
427
|
|
411
428
|
"""
|
412
429
|
reverse prediction function from memory
|
@@ -417,8 +434,6 @@ def reverse_predict_model_ram(output, W, dtype=np.float32):
|
|
417
434
|
|
418
435
|
W (list of ndarrays): Weights of the model.
|
419
436
|
|
420
|
-
dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!]
|
421
|
-
|
422
437
|
Returns:
|
423
438
|
ndarray: Input from the model.
|
424
439
|
"""
|
@@ -59,6 +59,13 @@ def save_model(model_name,
|
|
59
59
|
if model_type != 'PLAN' and model_type != 'MLP':
|
60
60
|
raise ValueError("model_type parameter must be 'PLAN' or 'MLP'.")
|
61
61
|
|
62
|
+
if isinstance(activation_potentiation, str):
|
63
|
+
activation_potentiation = [activation_potentiation]
|
64
|
+
else:
|
65
|
+
activation_potentiation = [item if isinstance(item, list) else [item] for item in activation_potentiation]
|
66
|
+
|
67
|
+
activation = activation_potentiation.copy()
|
68
|
+
|
62
69
|
if test_acc is not None:
|
63
70
|
test_acc= float(test_acc)
|
64
71
|
|
@@ -101,30 +108,30 @@ def save_model(model_name,
|
|
101
108
|
|
102
109
|
SynapseCount.append(' ')
|
103
110
|
|
104
|
-
|
105
|
-
|
111
|
+
activation.append('')
|
112
|
+
activation.insert(0, '')
|
106
113
|
|
107
|
-
if
|
108
|
-
|
109
|
-
|
114
|
+
if len(activation) == 1 and model_type == 'PLAN':
|
115
|
+
activation = [activation]
|
116
|
+
activation.append('')
|
110
117
|
|
111
|
-
if len(
|
112
|
-
for i in range(len(
|
118
|
+
if len(activation) > len(NeuronCount):
|
119
|
+
for i in range(len(activation) - len(NeuronCount)):
|
113
120
|
NeuronCount.append('')
|
114
121
|
|
115
|
-
if len(
|
116
|
-
for i in range(len(
|
122
|
+
if len(activation) > len(SynapseCount):
|
123
|
+
for i in range(len(activation) - len(SynapseCount)):
|
117
124
|
SynapseCount.append('')
|
118
125
|
|
119
126
|
if scaler_params != None:
|
120
127
|
|
121
|
-
if len(scaler_params) > len(
|
128
|
+
if len(scaler_params) > len(activation):
|
122
129
|
|
123
|
-
|
130
|
+
activation += ['']
|
124
131
|
|
125
|
-
elif len(
|
132
|
+
elif len(activation) > len(scaler_params):
|
126
133
|
|
127
|
-
for i in range(len(
|
134
|
+
for i in range(len(activation) - len(scaler_params)):
|
128
135
|
|
129
136
|
scaler_params.append(' ')
|
130
137
|
|
@@ -142,7 +149,7 @@ def save_model(model_name,
|
|
142
149
|
'WEIGHTS FORMAT': weights_format,
|
143
150
|
'MODEL PATH': model_path,
|
144
151
|
'STANDARD SCALER': scaler_params,
|
145
|
-
'ACTIVATION POTENTIATION':
|
152
|
+
'ACTIVATION POTENTIATION': activation
|
146
153
|
}
|
147
154
|
|
148
155
|
df = pd.DataFrame(data)
|
@@ -315,6 +322,11 @@ def predict_model_ssd(Input, model_name, model_path='', dtype=cp.float32):
|
|
315
322
|
W = model[get_weights()]
|
316
323
|
model_type = model[get_model_type()]
|
317
324
|
|
325
|
+
if isinstance(activation_potentiation, str):
|
326
|
+
activation_potentiation = [activation_potentiation]
|
327
|
+
else:
|
328
|
+
activation_potentiation = [item if isinstance(item, list) else [item] for item in activation_potentiation]
|
329
|
+
|
318
330
|
Input = standard_scaler(None, Input, scaler_params)
|
319
331
|
|
320
332
|
if model_type == 'MLP':
|
@@ -395,7 +407,12 @@ def predict_model_ram(Input, W, scaler_params=None, activation_potentiation=['li
|
|
395
407
|
from .activation_functions_cuda import apply_activation
|
396
408
|
|
397
409
|
try:
|
398
|
-
|
410
|
+
|
411
|
+
if isinstance(activation_potentiation, str):
|
412
|
+
activation_potentiation = [activation_potentiation]
|
413
|
+
else:
|
414
|
+
activation_potentiation = [item if isinstance(item, list) else [item] for item in activation_potentiation]
|
415
|
+
|
399
416
|
Input = standard_scaler(None, Input, scaler_params)
|
400
417
|
|
401
418
|
if is_mlp:
|
pyerualjetwork/plan.py
CHANGED
@@ -404,6 +404,11 @@ def evaluate(
|
|
404
404
|
|
405
405
|
if auto_normalization: x_test = normalization(x_test, dtype=x_test.dtype)
|
406
406
|
|
407
|
+
if isinstance(activation_potentiation, str):
|
408
|
+
activation_potentiation = [activation_potentiation]
|
409
|
+
else:
|
410
|
+
activation_potentiation = [item if isinstance(item, list) else [item] for item in activation_potentiation]
|
411
|
+
|
407
412
|
x_test = apply_activation(x_test, activation_potentiation)
|
408
413
|
|
409
414
|
result = x_test @ W.T
|
pyerualjetwork/plan_cuda.py
CHANGED
@@ -413,6 +413,11 @@ def evaluate(
|
|
413
413
|
|
414
414
|
if auto_normalization: x_test = normalization(x_test, dtype=x_test.dtype)
|
415
415
|
|
416
|
+
if isinstance(activation_potentiation, str):
|
417
|
+
activation_potentiation = [activation_potentiation]
|
418
|
+
else:
|
419
|
+
activation_potentiation = [item if isinstance(item, list) else [item] for item in activation_potentiation]
|
420
|
+
|
416
421
|
x_test = apply_activation(x_test, activation_potentiation)
|
417
422
|
|
418
423
|
result = x_test @ W.T
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.6.
|
3
|
+
Version: 4.6.8b0
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -0,0 +1,25 @@
|
|
1
|
+
pyerualjetwork/__init__.py,sha256=u-vA_SDH_vmQI2fEUzbCFlIJG84uHxcir0gEXc-UvgQ,1281
|
2
|
+
pyerualjetwork/activation_functions.py,sha256=0fNOHXd490HC6gadKwb0AuBjw34dWq3GRZkg5iWO27c,7621
|
3
|
+
pyerualjetwork/activation_functions_cuda.py,sha256=X5-dtYBkGp35kyL21eLR7mbYUdttxElu-WqXmwmkV9E,7672
|
4
|
+
pyerualjetwork/data_operations.py,sha256=XKYG9-mLa3qKAXUjejuD7V8aJKjpl5PdQwKzPFjpKgs,15437
|
5
|
+
pyerualjetwork/data_operations_cuda.py,sha256=zqiHXDRtC8qDlVlN6lLoZn9uQgkm40aKFfFjWjurCxQ,17538
|
6
|
+
pyerualjetwork/fitness_functions.py,sha256=urRdeMvUhNgWxD4ZGHCRdQlIf9cTWYMvF3_aVBojRqY,1235
|
7
|
+
pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
8
|
+
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
9
|
+
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
10
|
+
pyerualjetwork/memory_operations.py,sha256=0yCOHcgiNyF4ccMcRlL1Q9F_byG4nzjhmkbpXE_yU6E,13401
|
11
|
+
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
12
|
+
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
13
|
+
pyerualjetwork/model_operations.py,sha256=SYMXYNFFLz2YUvmp9lSKXd2L1vCwhyL_AUjL3UYCkZw,15134
|
14
|
+
pyerualjetwork/model_operations_cuda.py,sha256=GE_71JLTItAFXz8iW60QeO4XKJ8fGeHgxETmHtW9drc,16204
|
15
|
+
pyerualjetwork/plan.py,sha256=cjVblo8TxTHX-GZPvgQvJZ34nOmzxSvtCrQi9K-Mhog,23268
|
16
|
+
pyerualjetwork/plan_cuda.py,sha256=ZEU_b_EoA-zPk7Gn94L_XBZz1v4mn8DOUsjTNV6fp8Q,24230
|
17
|
+
pyerualjetwork/planeat.py,sha256=prbkUIrD37Y_b7MmTuGg4rGHXfqHIjLFMbs7TnnEy9E,44645
|
18
|
+
pyerualjetwork/planeat_cuda.py,sha256=i6WDHkUEAMK7IHNBilM29xyYWq2qvPNpF9idcAkC1EU,44650
|
19
|
+
pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
20
|
+
pyerualjetwork/visualizations.py,sha256=utnX9zQhzmtvBJLOLNGm2jecVVk4zHXABQdjb0XzJac,28352
|
21
|
+
pyerualjetwork/visualizations_cuda.py,sha256=gnoaaazZ-nc9E1ImqXrZBRgQ4Rnpi2qh2yGJ2eLKMlE,28807
|
22
|
+
pyerualjetwork-4.6.8b0.dist-info/METADATA,sha256=nB7S7mpl1snTt4T8QzTSs8ShpPEpny_at6JXeqW5h2c,7507
|
23
|
+
pyerualjetwork-4.6.8b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
24
|
+
pyerualjetwork-4.6.8b0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
25
|
+
pyerualjetwork-4.6.8b0.dist-info/RECORD,,
|
@@ -1,25 +0,0 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=qAWAFwiPtMCcyatR3z8bCv1Q33nVY7aqHH7j712tyoc,1279
|
2
|
-
pyerualjetwork/activation_functions.py,sha256=Ms0AGBqkJuCA42ht64MSQnO54Td_1eDGquedpoBDVbc,7642
|
3
|
-
pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
4
|
-
pyerualjetwork/data_operations.py,sha256=Y_RdxkjLEszFgeo4VDWIX1keF2syP-88KesLXA5sRyY,15280
|
5
|
-
pyerualjetwork/data_operations_cuda.py,sha256=9tyD3Bbv5__stuUampgh3_GbMhb_kmTTJmZi7BJsvuA,17381
|
6
|
-
pyerualjetwork/fitness_functions.py,sha256=urRdeMvUhNgWxD4ZGHCRdQlIf9cTWYMvF3_aVBojRqY,1235
|
7
|
-
pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
8
|
-
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
9
|
-
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
10
|
-
pyerualjetwork/memory_operations.py,sha256=0yCOHcgiNyF4ccMcRlL1Q9F_byG4nzjhmkbpXE_yU6E,13401
|
11
|
-
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
12
|
-
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
13
|
-
pyerualjetwork/model_operations.py,sha256=KaJS2IM5Uk527DqN2ENdKX99yJElymfTmE3226j2HwM,14941
|
14
|
-
pyerualjetwork/model_operations_cuda.py,sha256=0MyokoskDTnMKugu4kU8PP4F5tLN6RYNUx_5SWvqoyg,15562
|
15
|
-
pyerualjetwork/plan.py,sha256=UyIvPmvHCHwczlc9KHolE4y6CPEeBfhnRN5yznSbnoM,23028
|
16
|
-
pyerualjetwork/plan_cuda.py,sha256=iteqgv7x9Z2Pj4vGOZs6HXS3r0bNaF_smr7ZXaOdRnw,23990
|
17
|
-
pyerualjetwork/planeat.py,sha256=prbkUIrD37Y_b7MmTuGg4rGHXfqHIjLFMbs7TnnEy9E,44645
|
18
|
-
pyerualjetwork/planeat_cuda.py,sha256=i6WDHkUEAMK7IHNBilM29xyYWq2qvPNpF9idcAkC1EU,44650
|
19
|
-
pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
20
|
-
pyerualjetwork/visualizations.py,sha256=utnX9zQhzmtvBJLOLNGm2jecVVk4zHXABQdjb0XzJac,28352
|
21
|
-
pyerualjetwork/visualizations_cuda.py,sha256=gnoaaazZ-nc9E1ImqXrZBRgQ4Rnpi2qh2yGJ2eLKMlE,28807
|
22
|
-
pyerualjetwork-4.6.7.dist-info/METADATA,sha256=191yqow3K5p68q4nmtWhIx95BDSOSj-xlwcT7w6Tmms,7505
|
23
|
-
pyerualjetwork-4.6.7.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
24
|
-
pyerualjetwork-4.6.7.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
25
|
-
pyerualjetwork-4.6.7.dist-info/RECORD,,
|
File without changes
|
File without changes
|