pyerualjetwork 4.5__py3-none-any.whl → 4.5.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/data_operations.py +45 -40
- pyerualjetwork/data_operations_cuda.py +42 -45
- pyerualjetwork/fitness_functions.py +3 -8
- pyerualjetwork/memory_operations.py +9 -23
- pyerualjetwork/model_operations.py +43 -55
- pyerualjetwork/model_operations_cuda.py +43 -53
- pyerualjetwork/plan.py +50 -72
- pyerualjetwork/plan_cuda.py +57 -85
- pyerualjetwork/planeat.py +1 -1
- pyerualjetwork/planeat_cuda.py +2 -2
- pyerualjetwork/visualizations.py +17 -17
- pyerualjetwork/visualizations_cuda.py +17 -17
- {pyerualjetwork-4.5.dist-info → pyerualjetwork-4.5.1.dist-info}/METADATA +1 -1
- pyerualjetwork-4.5.1.dist-info/RECORD +25 -0
- pyerualjetwork-4.5.dist-info/RECORD +0 -25
- {pyerualjetwork-4.5.dist-info → pyerualjetwork-4.5.1.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.5.dist-info → pyerualjetwork-4.5.1.dist-info}/top_level.txt +0 -0
pyerualjetwork/planeat_cuda.py
CHANGED
@@ -37,7 +37,7 @@ def define_genomes(input_shape, output_shape, population_size, dtype=cp.float32)
|
|
37
37
|
|
38
38
|
population_size (int): The number of genomes (individuals) in the population.
|
39
39
|
|
40
|
-
dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16.
|
40
|
+
dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16.
|
41
41
|
|
42
42
|
Returns:
|
43
43
|
tuple: A tuple containing:
|
@@ -97,7 +97,7 @@ def evolver(weights,
|
|
97
97
|
weight_mutate_prob=1,
|
98
98
|
dtype=cp.float32):
|
99
99
|
"""
|
100
|
-
|
100
|
+
Applies the evolving process of a population of genomes using selection, crossover, mutation, and activation function potentiation.
|
101
101
|
The function modifies the population's weights and activation functions based on a specified policy, mutation probabilities, and strategy.
|
102
102
|
|
103
103
|
'selection' args effects cross-over.
|
pyerualjetwork/visualizations.py
CHANGED
@@ -9,27 +9,27 @@ def draw_neural_web(W, ax, G, return_objs=False):
|
|
9
9
|
"""
|
10
10
|
Visualizes a neural web by drawing the neural network structure.
|
11
11
|
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
12
|
+
Args:
|
13
|
+
W : numpy.ndarray
|
14
|
+
A 2D array representing the connection weights of the neural network.
|
15
|
+
ax : matplotlib.axes.Axes
|
16
|
+
The matplotlib axes where the graph will be drawn.
|
17
|
+
G : networkx.Graph
|
18
|
+
The NetworkX graph representing the neural network structure.
|
19
|
+
return_objs : bool, optional
|
20
|
+
If True, returns the drawn objects (nodes and edges). Default is False.
|
21
21
|
|
22
22
|
Returns:
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
23
|
+
art1 : matplotlib.collections.PathCollection or None
|
24
|
+
Returns the node collection if return_objs is True; otherwise, returns None.
|
25
|
+
art2 : matplotlib.collections.LineCollection or None
|
26
|
+
Returns the edge collection if return_objs is True; otherwise, returns None.
|
27
|
+
art3 : matplotlib.collections.TextCollection or None
|
28
|
+
Returns the label collection if return_objs is True; otherwise, returns None.
|
29
29
|
|
30
30
|
Example:
|
31
|
-
|
32
|
-
|
31
|
+
art1, art2, art3 = draw_neural_web(W, ax, G, return_objs=True)
|
32
|
+
plt.show()
|
33
33
|
"""
|
34
34
|
|
35
35
|
for i in range(W.shape[0]):
|
@@ -9,27 +9,27 @@ def draw_neural_web(W, ax, G, return_objs=False):
|
|
9
9
|
"""
|
10
10
|
Visualizes a neural web by drawing the neural network structure.
|
11
11
|
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
12
|
+
Args:
|
13
|
+
W : numpy.ndarray
|
14
|
+
A 2D array representing the connection weights of the neural network.
|
15
|
+
ax : matplotlib.axes.Axes
|
16
|
+
The matplotlib axes where the graph will be drawn.
|
17
|
+
G : networkx.Graph
|
18
|
+
The NetworkX graph representing the neural network structure.
|
19
|
+
return_objs : bool, optional
|
20
|
+
If True, returns the drawn objects (nodes and edges). Default is False.
|
21
21
|
|
22
22
|
Returns:
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
23
|
+
art1 : matplotlib.collections.PathCollection or None
|
24
|
+
Returns the node collection if return_objs is True; otherwise, returns None.
|
25
|
+
art2 : matplotlib.collections.LineCollection or None
|
26
|
+
Returns the edge collection if return_objs is True; otherwise, returns None.
|
27
|
+
art3 : matplotlib.collections.TextCollection or None
|
28
|
+
Returns the label collection if return_objs is True; otherwise, returns None.
|
29
29
|
|
30
30
|
Example:
|
31
|
-
|
32
|
-
|
31
|
+
art1, art2, art3 = draw_neural_web(W, ax, G, return_objs=True)
|
32
|
+
plt.show()
|
33
33
|
"""
|
34
34
|
W = W.get()
|
35
35
|
for i in range(W.shape[0]):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.5
|
3
|
+
Version: 4.5.1
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -0,0 +1,25 @@
|
|
1
|
+
pyerualjetwork/__init__.py,sha256=Oe1PUj-kEsIW73oaiAxac3x_QQxSAFhOpUacNgzc6gs,1279
|
2
|
+
pyerualjetwork/activation_functions.py,sha256=Ms0AGBqkJuCA42ht64MSQnO54Td_1eDGquedpoBDVbc,7642
|
3
|
+
pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
4
|
+
pyerualjetwork/data_operations.py,sha256=SOPcuCUedAVKLZ10q4uX8XVgtFAgQ2gz6efVHR6ctw0,15166
|
5
|
+
pyerualjetwork/data_operations_cuda.py,sha256=X0rUCxehqyVknjBToJ0zXCTGQwlAA7GEVAcqQ-YJYfQ,17267
|
6
|
+
pyerualjetwork/fitness_functions.py,sha256=urRdeMvUhNgWxD4ZGHCRdQlIf9cTWYMvF3_aVBojRqY,1235
|
7
|
+
pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
8
|
+
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
9
|
+
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
10
|
+
pyerualjetwork/memory_operations.py,sha256=0yCOHcgiNyF4ccMcRlL1Q9F_byG4nzjhmkbpXE_yU6E,13401
|
11
|
+
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
12
|
+
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
13
|
+
pyerualjetwork/model_operations.py,sha256=BLRL_5s_KSs8iCiLsEwWvhRcGiWCP_TD9lsjYWM7Zek,12746
|
14
|
+
pyerualjetwork/model_operations_cuda.py,sha256=b3Bkobbrhq28AmYZ0vGxf2Hf8V2LPvoiM0xaPAApqec,13254
|
15
|
+
pyerualjetwork/plan.py,sha256=UyIvPmvHCHwczlc9KHolE4y6CPEeBfhnRN5yznSbnoM,23028
|
16
|
+
pyerualjetwork/plan_cuda.py,sha256=iteqgv7x9Z2Pj4vGOZs6HXS3r0bNaF_smr7ZXaOdRnw,23990
|
17
|
+
pyerualjetwork/planeat.py,sha256=_dnGRVBzdRUgvVCnHZ721tdXYV9PSvCz-aUnj--5VpU,38697
|
18
|
+
pyerualjetwork/planeat_cuda.py,sha256=CXBF4vsTZ-fE-3W8Zc6Zxe_oKuyJS02FaHsOzSwzLV8,38731
|
19
|
+
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
20
|
+
pyerualjetwork/visualizations.py,sha256=utnX9zQhzmtvBJLOLNGm2jecVVk4zHXABQdjb0XzJac,28352
|
21
|
+
pyerualjetwork/visualizations_cuda.py,sha256=gnoaaazZ-nc9E1ImqXrZBRgQ4Rnpi2qh2yGJ2eLKMlE,28807
|
22
|
+
pyerualjetwork-4.5.1.dist-info/METADATA,sha256=xjGpEBnY_JunoNvXCbD1oJfdYL7Wvzj0Nt7oWj61gZg,7505
|
23
|
+
pyerualjetwork-4.5.1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
24
|
+
pyerualjetwork-4.5.1.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
25
|
+
pyerualjetwork-4.5.1.dist-info/RECORD,,
|
@@ -1,25 +0,0 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=xOgL47nXk4gItE1UKQ_uEBevdRI2RUjN5RVuB-BRlHM,1277
|
2
|
-
pyerualjetwork/activation_functions.py,sha256=Ms0AGBqkJuCA42ht64MSQnO54Td_1eDGquedpoBDVbc,7642
|
3
|
-
pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
4
|
-
pyerualjetwork/data_operations.py,sha256=c2FWIdHJQw_h6QP_ir0yx22zP7a9CtRp249V8Ro9V-0,15357
|
5
|
-
pyerualjetwork/data_operations_cuda.py,sha256=IqS0JoXGM0XiYfoFSAj9li1WWiBroNXIcN52JWhlNFk,18224
|
6
|
-
pyerualjetwork/fitness_functions.py,sha256=GisM8mDJAivw8YailXXDAw2M-lW1MHwRnIlWUVe-UEg,1261
|
7
|
-
pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
8
|
-
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
9
|
-
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
10
|
-
pyerualjetwork/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
|
11
|
-
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
12
|
-
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
13
|
-
pyerualjetwork/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
|
14
|
-
pyerualjetwork/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
|
15
|
-
pyerualjetwork/plan.py,sha256=XEptIEWfWbqXEy92Eil5q_uujEiIBWnjejAGD7Lh0-w,22975
|
16
|
-
pyerualjetwork/plan_cuda.py,sha256=rFHZa8jsgfol0uUo1rfCKAGtb-B4ivfzqqlnynsfMzQ,23966
|
17
|
-
pyerualjetwork/planeat.py,sha256=DVJGptIPYKyz4ePwqRnbbwgHwQzbxMoBci0Te8kfCzk,38802
|
18
|
-
pyerualjetwork/planeat_cuda.py,sha256=-GxZY8aMPayuYhwhcsRVn4LWq604o36VxkEtdoBum98,38835
|
19
|
-
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
20
|
-
pyerualjetwork/visualizations.py,sha256=1QSisYAaGnO5kug6qo1qOssTkQM-MgR7L8h4c3sczzU,28294
|
21
|
-
pyerualjetwork/visualizations_cuda.py,sha256=PYRqj4QYUbuYMYcNwO8yaTPB-jK7E6kZHhTrAi0lwPU,28749
|
22
|
-
pyerualjetwork-4.5.dist-info/METADATA,sha256=njuvH-FdU7-KudHvxUEJvBeyOvDWzyWi52ZIpRjR9K4,7503
|
23
|
-
pyerualjetwork-4.5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
24
|
-
pyerualjetwork-4.5.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
25
|
-
pyerualjetwork-4.5.dist-info/RECORD,,
|
File without changes
|
File without changes
|