pyerualjetwork 4.5.1__py3-none-any.whl → 4.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/data_operations.py +6 -6
- pyerualjetwork/data_operations_cuda.py +6 -6
- pyerualjetwork/planeat_cuda.py +1 -1
- pyerualjetwork/ui.py +10 -9
- {pyerualjetwork-4.5.1.dist-info → pyerualjetwork-4.5.2.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.5.1.dist-info → pyerualjetwork-4.5.2.dist-info}/RECORD +9 -9
- {pyerualjetwork-4.5.1.dist-info → pyerualjetwork-4.5.2.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.5.1.dist-info → pyerualjetwork-4.5.2.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.5.
|
1
|
+
__version__ = "4.5.2"
|
2
2
|
__update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
|
3
3
|
* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
|
4
4
|
* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
@@ -126,7 +126,7 @@ def manuel_balancer(x_train, y_train, target_samples_per_class, dtype=np.float32
|
|
126
126
|
x_balanced -- Balanced input dataset (numpy array format)
|
127
127
|
y_balanced -- Balanced class labels (one-hot encoded, numpy array format)
|
128
128
|
"""
|
129
|
-
from .ui import loading_bars
|
129
|
+
from .ui import loading_bars, get_loading_bar_style
|
130
130
|
from .memory_operations import transfer_to_cpu
|
131
131
|
|
132
132
|
x_train = transfer_to_cpu(x_train, dtype=dtype)
|
@@ -138,7 +138,7 @@ def manuel_balancer(x_train, y_train, target_samples_per_class, dtype=np.float32
|
|
138
138
|
x_balanced = []
|
139
139
|
y_balanced = []
|
140
140
|
|
141
|
-
for class_label in tqdm(range(class_count),leave=False, ascii=
|
141
|
+
for class_label in tqdm(range(class_count),leave=False, ascii=get_loading_bar_style(),
|
142
142
|
bar_format=bar_format,desc='Augmenting Data',ncols= 52):
|
143
143
|
class_indices = np.where(np.argmax(y_train, axis=1) == class_label)[0]
|
144
144
|
num_samples = len(class_indices)
|
@@ -201,7 +201,7 @@ def auto_balancer(x_train, y_train, dtype=np.float32):
|
|
201
201
|
Returns:
|
202
202
|
tuple: A tuple containing balanced input data and labels.
|
203
203
|
"""
|
204
|
-
from .ui import loading_bars
|
204
|
+
from .ui import loading_bars, get_loading_bar_style
|
205
205
|
from .memory_operations import transfer_to_cpu
|
206
206
|
|
207
207
|
x_train = transfer_to_cpu(x_train, dtype=dtype)
|
@@ -222,7 +222,7 @@ def auto_balancer(x_train, y_train, dtype=np.float32):
|
|
222
222
|
MinCount = min(classes)
|
223
223
|
|
224
224
|
BalancedIndices = []
|
225
|
-
for i in tqdm(range(class_count),leave=False, ascii=
|
225
|
+
for i in tqdm(range(class_count),leave=False, ascii=get_loading_bar_style(),
|
226
226
|
bar_format= bar_format, desc='Balancing Data',ncols=70):
|
227
227
|
if len(ClassIndices[i]) > MinCount:
|
228
228
|
SelectedIndices = np.random.choice(
|
@@ -267,7 +267,7 @@ def synthetic_augmentation(x, y, dtype=np.float32):
|
|
267
267
|
Returns:
|
268
268
|
x_train_balanced, y_train_balanced (numpy array format)
|
269
269
|
"""
|
270
|
-
from .ui import loading_bars
|
270
|
+
from .ui import loading_bars, get_loading_bar_style
|
271
271
|
from .memory_operations import transfer_to_cpu
|
272
272
|
|
273
273
|
x = transfer_to_cpu(x, dtype=dtype)
|
@@ -286,7 +286,7 @@ def synthetic_augmentation(x, y, dtype=np.float32):
|
|
286
286
|
y_balanced = list(y)
|
287
287
|
|
288
288
|
|
289
|
-
for class_label in tqdm(range(class_count), leave=False, ascii=
|
289
|
+
for class_label in tqdm(range(class_count), leave=False, ascii=get_loading_bar_style(),
|
290
290
|
bar_format=bar_format,desc='Augmenting Data',ncols= 52):
|
291
291
|
class_indices = [i for i, label in enumerate(
|
292
292
|
y) if np.argmax(label) == class_label]
|
@@ -142,7 +142,7 @@ def manuel_balancer(x_train, y_train, target_samples_per_class, dtype=cp.float32
|
|
142
142
|
x_balanced -- Balanced input dataset (cupy array format)
|
143
143
|
y_balanced -- Balanced class labels (one-hot encoded, cupy array format)
|
144
144
|
"""
|
145
|
-
from .ui import loading_bars
|
145
|
+
from .ui import loading_bars, get_loading_bar_style
|
146
146
|
from .memory_operations import transfer_to_gpu
|
147
147
|
|
148
148
|
bar_format = loading_bars()[0]
|
@@ -155,7 +155,7 @@ def manuel_balancer(x_train, y_train, target_samples_per_class, dtype=cp.float32
|
|
155
155
|
x_balanced = []
|
156
156
|
y_balanced = []
|
157
157
|
|
158
|
-
for class_label in tqdm(range(class_count),leave=False, ascii=
|
158
|
+
for class_label in tqdm(range(class_count),leave=False, ascii=get_loading_bar_style(),
|
159
159
|
bar_format=bar_format,desc='Augmenting Data',ncols= 52):
|
160
160
|
class_indices = cp.where(cp.argmax(y_train, axis=1) == class_label)[0]
|
161
161
|
num_samples = len(class_indices)
|
@@ -231,7 +231,7 @@ def auto_balancer(x_train, y_train, dtype=cp.float32, shuffle_in_cpu=False):
|
|
231
231
|
tuple: A tuple containing balanced input data and labels.
|
232
232
|
"""
|
233
233
|
|
234
|
-
from .ui import loading_bars
|
234
|
+
from .ui import loading_bars, get_loading_bar_style
|
235
235
|
from .memory_operations import transfer_to_gpu
|
236
236
|
|
237
237
|
x_train = transfer_to_gpu(x_train, dtype=dtype)
|
@@ -254,7 +254,7 @@ def auto_balancer(x_train, y_train, dtype=cp.float32, shuffle_in_cpu=False):
|
|
254
254
|
MinCount = min(classes)
|
255
255
|
|
256
256
|
BalancedIndices = []
|
257
|
-
for i in tqdm(range(class_count),leave=False, ascii=
|
257
|
+
for i in tqdm(range(class_count),leave=False, ascii=get_loading_bar_style(),
|
258
258
|
bar_format= bar_format, desc='Balancing Data',ncols=70):
|
259
259
|
if len(ClassIndices[i]) > MinCount:
|
260
260
|
if shuffle_in_cpu:
|
@@ -301,7 +301,7 @@ def synthetic_augmentation(x_train, y_train, dtype=cp.float32, shuffle_in_cpu=Fa
|
|
301
301
|
Returns:
|
302
302
|
x_train_balanced, y_train_balanced (cupy array format)
|
303
303
|
"""
|
304
|
-
from .ui import loading_bars
|
304
|
+
from .ui import loading_bars, get_loading_bar_style
|
305
305
|
from .memory_operations import transfer_to_gpu
|
306
306
|
|
307
307
|
x = transfer_to_gpu(x_train, dtype=dtype)
|
@@ -320,7 +320,7 @@ def synthetic_augmentation(x_train, y_train, dtype=cp.float32, shuffle_in_cpu=Fa
|
|
320
320
|
x_balanced = list(x)
|
321
321
|
y_balanced = list(y)
|
322
322
|
|
323
|
-
for class_label in tqdm(range(class_count), leave=False, ascii=
|
323
|
+
for class_label in tqdm(range(class_count), leave=False, ascii=get_loading_bar_style(),
|
324
324
|
bar_format=bar_format, desc='Augmenting Data', ncols=52):
|
325
325
|
class_indices = [i for i, label in enumerate(y) if cp.argmax(label) == class_label]
|
326
326
|
num_samples = len(class_indices)
|
pyerualjetwork/planeat_cuda.py
CHANGED
@@ -218,7 +218,7 @@ def evolver(weights,
|
|
218
218
|
|
219
219
|
Example:
|
220
220
|
```python
|
221
|
-
weights, activation_potentiations =
|
221
|
+
weights, activation_potentiations = planeat_cuda.evolver(weights, activation_potentiations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
|
222
222
|
```
|
223
223
|
|
224
224
|
- The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
|
pyerualjetwork/ui.py
CHANGED
@@ -1,22 +1,23 @@
|
|
1
1
|
from tqdm import tqdm
|
2
2
|
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
RESET = "\033[0m"
|
7
|
-
|
8
|
-
bar_format_normal = f"{GREEN}{{bar}}{GREEN} {RESET} {{l_bar}} {{remaining}} {{postfix}}"
|
9
|
-
bar_format_learner = f"{GREEN}{{bar}}{GREEN} {RESET} {{remaining}} {{postfix}}"
|
3
|
+
GREY = "\033[90m"
|
4
|
+
GREEN = "\033[92m"
|
5
|
+
RESET = "\033[0m"
|
10
6
|
|
7
|
+
def loading_bars():
|
8
|
+
bar_format_normal = "{bar} {l_bar} {remaining} {postfix}"
|
9
|
+
bar_format_learner = "{bar} {remaining} {postfix}"
|
11
10
|
return bar_format_normal, bar_format_learner
|
12
11
|
|
12
|
+
def get_loading_bar_style():
|
13
|
+
return (f"{GREY}━{RESET}", f"{GREEN}━{RESET}")
|
13
14
|
|
14
|
-
def initialize_loading_bar(total, desc, ncols, bar_format, leave=True):
|
15
|
+
def initialize_loading_bar(total, desc, ncols, bar_format, loading_bar_style=get_loading_bar_style(), leave=True):
|
15
16
|
return tqdm(
|
16
17
|
total=total,
|
17
18
|
leave=leave,
|
18
19
|
desc=desc,
|
19
|
-
ascii=
|
20
|
+
ascii=loading_bar_style,
|
20
21
|
bar_format=bar_format,
|
21
22
|
ncols=ncols,
|
22
23
|
)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.5.
|
3
|
+
Version: 4.5.2
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,8 +1,8 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=gLefqpCFeKrA5712LsxchV-J2cN2QfDpGNwouaCaoAM,1279
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=Ms0AGBqkJuCA42ht64MSQnO54Td_1eDGquedpoBDVbc,7642
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
4
|
-
pyerualjetwork/data_operations.py,sha256=
|
5
|
-
pyerualjetwork/data_operations_cuda.py,sha256=
|
4
|
+
pyerualjetwork/data_operations.py,sha256=Y_RdxkjLEszFgeo4VDWIX1keF2syP-88KesLXA5sRyY,15280
|
5
|
+
pyerualjetwork/data_operations_cuda.py,sha256=9tyD3Bbv5__stuUampgh3_GbMhb_kmTTJmZi7BJsvuA,17381
|
6
6
|
pyerualjetwork/fitness_functions.py,sha256=urRdeMvUhNgWxD4ZGHCRdQlIf9cTWYMvF3_aVBojRqY,1235
|
7
7
|
pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
8
8
|
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
@@ -15,11 +15,11 @@ pyerualjetwork/model_operations_cuda.py,sha256=b3Bkobbrhq28AmYZ0vGxf2Hf8V2LPvoiM
|
|
15
15
|
pyerualjetwork/plan.py,sha256=UyIvPmvHCHwczlc9KHolE4y6CPEeBfhnRN5yznSbnoM,23028
|
16
16
|
pyerualjetwork/plan_cuda.py,sha256=iteqgv7x9Z2Pj4vGOZs6HXS3r0bNaF_smr7ZXaOdRnw,23990
|
17
17
|
pyerualjetwork/planeat.py,sha256=_dnGRVBzdRUgvVCnHZ721tdXYV9PSvCz-aUnj--5VpU,38697
|
18
|
-
pyerualjetwork/planeat_cuda.py,sha256=
|
19
|
-
pyerualjetwork/ui.py,sha256=
|
18
|
+
pyerualjetwork/planeat_cuda.py,sha256=v-R_ZpnSeIFeSxfYOvSTXfetnfaECap2f84jBEu7X-Q,38736
|
19
|
+
pyerualjetwork/ui.py,sha256=JBTFYz5R24XwNKhA3GSW-oYAoiIBxAE3kFGXkvm5gqw,656
|
20
20
|
pyerualjetwork/visualizations.py,sha256=utnX9zQhzmtvBJLOLNGm2jecVVk4zHXABQdjb0XzJac,28352
|
21
21
|
pyerualjetwork/visualizations_cuda.py,sha256=gnoaaazZ-nc9E1ImqXrZBRgQ4Rnpi2qh2yGJ2eLKMlE,28807
|
22
|
-
pyerualjetwork-4.5.
|
23
|
-
pyerualjetwork-4.5.
|
24
|
-
pyerualjetwork-4.5.
|
25
|
-
pyerualjetwork-4.5.
|
22
|
+
pyerualjetwork-4.5.2.dist-info/METADATA,sha256=mLFwYOUwuZ7czsv52GiAMdtP59QAORXBOVrefWXadfw,7505
|
23
|
+
pyerualjetwork-4.5.2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
24
|
+
pyerualjetwork-4.5.2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
25
|
+
pyerualjetwork-4.5.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|