pyerualjetwork 4.3.9b6__py3-none-any.whl → 4.3.9b7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.9b6"
1
+ __version__ = "4.3.9b7"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
pyerualjetwork/planeat.py CHANGED
@@ -17,10 +17,9 @@ import random
17
17
  import math
18
18
 
19
19
  ### LIBRARY IMPORTS ###
20
- from .plan import feed_forward
21
20
  from .data_operations import normalization
22
21
  from .ui import loading_bars, initialize_loading_bar
23
- from. activation_functions import apply_activation, all_activations
22
+ from .activation_functions import apply_activation, all_activations
24
23
 
25
24
  def define_genomes(input_shape, output_shape, population_size, dtype=np.float32):
26
25
  """
@@ -297,6 +296,7 @@ def evolver(weights,
297
296
  mutated_W = np.copy(bad_weights)
298
297
  mutated_act = bad_activations.copy()
299
298
 
299
+
300
300
  for i in range(len(bad_weights)):
301
301
 
302
302
  if policy == 'aggressive':
@@ -399,7 +399,7 @@ def evolver(weights,
399
399
  return weights, activation_potentiations
400
400
 
401
401
 
402
- def evaluate(x_population, weights, activation_potentiations, rl_mode=False, dtype=np.float32):
402
+ def evaluate(x_population, weights, activation_potentiations):
403
403
  """
404
404
  Evaluates the performance of a population of genomes, applying different activation functions
405
405
  and weights depending on whether reinforcement learning mode is enabled or not.
@@ -412,62 +412,30 @@ def evaluate(x_population, weights, activation_potentiations, rl_mode=False, dty
412
412
  activation_potentiations (list or str): A list where each entry represents an activation function
413
413
  or a potentiation strategy applied to each genome. If only one
414
414
  activation function is used, this can be a single string.
415
- rl_mode (bool, optional): If True, reinforcement learning mode is activated, this accepts x_population is a single genome. (Also weights and activation_potentations a single genomes part.)
416
- Default is False.
417
-
418
- dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
419
-
420
415
  Returns:
421
416
  list: A list of outputs corresponding to each genome in the population after applying the respective
422
417
  activation function and weights.
423
418
 
424
- Notes:
425
- - If `rl_mode` is True:
426
- - Accepts x_population is a single genom
427
- - The inputs are flattened, and the activation function is applied across the single genom.
428
-
429
- - If `rl_mode` is False:
430
- - Accepts x_population is a list of genomes
431
- - Each genome is processed individually, and the results are stored in the `outputs` list.
432
-
433
- - `feed_forward()` function is the core function that processes the input with the given weights and activation function.
434
-
435
419
  Example:
436
420
  ```python
437
- outputs = evaluate(x_population, weights, activation_potentiations, rl_mode=False)
421
+ outputs = evaluate(x_population, weights, activation_potentiations)
438
422
  ```
439
423
 
440
424
  - The function returns a list of outputs after processing the population, where each element corresponds to
441
425
  the output for each genome in `x_population`.
442
- """
443
-
444
- ### IF RL_MODE IS TRUE, A SINGLE GENOME IS ASSUMED AS INPUT, A FEEDFORWARD PREDICTION IS MADE, AND THE OUTPUT(NPARRAY) IS RETURNED:
426
+ """
427
+ ### THE OUTPUTS ARE RETURNED, WHERE EACH GENOME'S OUTPUT MATCHES ITS INDEX:
445
428
 
446
- ### IF RL_MODE IS FALSE, PREDICTIONS ARE MADE FOR ALL GENOMES IN THE GROUP USING THEIR CORRESPONDING INDEXED INPUTS AND DATA.
447
- ### THE OUTPUTS ARE RETURNED AS A PYTHON LIST, WHERE EACH GENOME'S OUTPUT MATCHES ITS INDEX:
448
-
449
- if rl_mode == True:
450
- Input = np.array(x_population, copy=False, dtype=dtype)
451
- Input = Input.ravel()
452
-
453
- if isinstance(activation_potentiations, str):
454
- activation_potentiations = [activation_potentiations]
455
-
456
- outputs = feed_forward(Input=Input, is_training=False, activation_potentiation=activation_potentiations, w=weights)
457
-
458
- else:
459
- outputs = [0] * len(x_population)
460
- for i, genome in enumerate(x_population):
461
-
462
- Input = np.array(genome, copy=False)
463
- Input = Input.ravel()
464
429
 
465
- if isinstance(activation_potentiations[i], str):
466
- activation_potentiations[i] = [activation_potentiations[i]]
430
+ if isinstance(activation_potentiations, str):
431
+ activation_potentiations = [activation_potentiations]
432
+ else:
433
+ activation_potentiations = [item if isinstance(item, list) else [item] for item in activation_potentiations]
467
434
 
468
- outputs[i] = feed_forward(Input=Input, is_training=False, activation_potentiation=activation_potentiations[i], w=weights[i])
435
+ x_population = apply_activation(x_population, activation_potentiations)
436
+ result = x_population @ weights.T
469
437
 
470
- return outputs
438
+ return result
471
439
 
472
440
 
473
441
  def cross_over(first_parent_W,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.9b6
3
+ Version: 4.3.9b7
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=koxM5MI-uTn5QAa9WgTtktH9ZJMJeFvU-lqLBGDbHt8,641
1
+ pyerualjetwork/__init__.py,sha256=9pV3ZfPPqMatL9LwixrmgVVhQ_rTYeIyrTAAutNbiuw,641
2
2
  pyerualjetwork/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
4
4
  pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
@@ -13,12 +13,12 @@ pyerualjetwork/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32s
13
13
  pyerualjetwork/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
14
14
  pyerualjetwork/plan.py,sha256=mcVxwBus_GwfYjWLMwx8KDc25uJT8l773l-mHCfa0Xk,23558
15
15
  pyerualjetwork/plan_cuda.py,sha256=8uEyYdQQX122Hcc-XfFoPSiCeLADt-y-cGX3AuRYPt0,24440
16
- pyerualjetwork/planeat.py,sha256=uRX-hDywGOai6hHhbYrmcRodNZOg4WCQeJWZbdMlZs8,39470
16
+ pyerualjetwork/planeat.py,sha256=OxwSjfSFPwh7kVrhnuAkr8Lrk73GB-Wk2ajUFIfZcbQ,37556
17
17
  pyerualjetwork/planeat_cuda.py,sha256=aTdBmhJeIKC58pssODtqVsdOtJP7W6TRmVyGHp7k_CM,37612
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=08O5uEewuYiovZRX1uHWEHjn19LcnhndWYvqVN74xs0,28290
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=PYRqj4QYUbuYMYcNwO8yaTPB-jK7E6kZHhTrAi0lwPU,28749
21
- pyerualjetwork-4.3.9b6.dist-info/METADATA,sha256=G5E_5NHaNjMFmJH2KbZ4MK8DFR0Dc6YFDjJhRHVGvBc,7476
22
- pyerualjetwork-4.3.9b6.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
- pyerualjetwork-4.3.9b6.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
- pyerualjetwork-4.3.9b6.dist-info/RECORD,,
21
+ pyerualjetwork-4.3.9b7.dist-info/METADATA,sha256=LaPTIsNcmnCw7sl_Q5PrEizpPa6aX236xs62-xnBOYw,7476
22
+ pyerualjetwork-4.3.9b7.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
+ pyerualjetwork-4.3.9b7.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
+ pyerualjetwork-4.3.9b7.dist-info/RECORD,,