pyerualjetwork 4.3.9b1__py3-none-any.whl → 4.3.9b2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/plan.py +7 -7
- pyerualjetwork/plan_cuda.py +7 -7
- {pyerualjetwork-4.3.9b1.dist-info → pyerualjetwork-4.3.9b2.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.3.9b1.dist-info → pyerualjetwork-4.3.9b2.dist-info}/RECORD +7 -7
- {pyerualjetwork-4.3.9b1.dist-info → pyerualjetwork-4.3.9b2.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.3.9b1.dist-info → pyerualjetwork-4.3.9b2.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.3.
|
1
|
+
__version__ = "4.3.9b2"
|
2
2
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
3
3
|
|
4
4
|
def print_version(__version__):
|
pyerualjetwork/plan.py
CHANGED
@@ -44,7 +44,7 @@ def fit(
|
|
44
44
|
y_train,
|
45
45
|
activation_potentiation=['linear'],
|
46
46
|
W=None,
|
47
|
-
|
47
|
+
auto_normalization=False,
|
48
48
|
dtype=np.float32
|
49
49
|
):
|
50
50
|
"""
|
@@ -60,7 +60,7 @@ def fit(
|
|
60
60
|
|
61
61
|
W (numpy.ndarray): If you want to re-continue or update model
|
62
62
|
|
63
|
-
|
63
|
+
auto_normalization (bool, optional): Normalization may solves overflow problem. Default: False
|
64
64
|
|
65
65
|
dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
|
66
66
|
|
@@ -74,8 +74,8 @@ def fit(
|
|
74
74
|
|
75
75
|
weight = np.zeros((len(y_train[0]), len(x_train[0].ravel()))).astype(dtype, copy=False) if W is None else W
|
76
76
|
|
77
|
-
if
|
78
|
-
elif
|
77
|
+
if auto_normalization is True: x_train = normalization(apply_activation(x_train, activation_potentiation))
|
78
|
+
elif auto_normalization is False: x_train = apply_activation(x_train, activation_potentiation)
|
79
79
|
else: raise ValueError('normalization parameter only be True or False')
|
80
80
|
|
81
81
|
weight += y_train.T @ x_train
|
@@ -84,7 +84,7 @@ def fit(
|
|
84
84
|
|
85
85
|
|
86
86
|
def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=None, batch_size=1, pop_size=None,
|
87
|
-
neural_web_history=False, show_current_activations=False,
|
87
|
+
neural_web_history=False, show_current_activations=False, auto_normalization=False,
|
88
88
|
neurons_history=False, early_stop=False, loss='categorical_crossentropy', show_history=False,
|
89
89
|
interval=33.33, target_acc=None, target_loss=None,
|
90
90
|
start_this_act=None, start_this_W=None, dtype=np.float32):
|
@@ -136,7 +136,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
|
|
136
136
|
|
137
137
|
show_history (bool, optional): If True, displays the training history after optimization. Default is False.
|
138
138
|
|
139
|
-
|
139
|
+
auto_normalization (bool, optional): Normalization may solves overflow problem. Default: False
|
140
140
|
|
141
141
|
loss (str, optional): For visualizing and monitoring. PLAN neural networks doesn't need any loss function in training. options: ('categorical_crossentropy' or 'binary_crossentropy') Default is 'categorical_crossentropy'.
|
142
142
|
|
@@ -231,7 +231,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
|
|
231
231
|
|
232
232
|
if fit_start is True and i == 0 and j < activation_potentiation_len:
|
233
233
|
act_pop[j] = activation_potentiation[j]
|
234
|
-
W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[j],
|
234
|
+
W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[j], auto_normalization=auto_normalization, dtype=dtype)
|
235
235
|
weight_pop[j] = W
|
236
236
|
|
237
237
|
model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], activation_potentiation=act_pop[j])
|
pyerualjetwork/plan_cuda.py
CHANGED
@@ -44,7 +44,7 @@ def fit(
|
|
44
44
|
y_train,
|
45
45
|
activation_potentiation=['linear'],
|
46
46
|
W=None,
|
47
|
-
|
47
|
+
auto_normalization=False,
|
48
48
|
dtype=cp.float32
|
49
49
|
):
|
50
50
|
"""
|
@@ -60,7 +60,7 @@ def fit(
|
|
60
60
|
|
61
61
|
W (cupy.ndarray, optional): If you want to re-continue or update model
|
62
62
|
|
63
|
-
|
63
|
+
auto_normalization (bool, optional): Normalization may solves overflow problem. Default: False
|
64
64
|
|
65
65
|
dtype (cupy.dtype, optional): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
|
66
66
|
|
@@ -73,8 +73,8 @@ def fit(
|
|
73
73
|
|
74
74
|
weight = cp.zeros((len(y_train[0]), len(x_train[0].ravel()))).astype(dtype, copy=False) if W is None else W
|
75
75
|
|
76
|
-
if
|
77
|
-
elif
|
76
|
+
if auto_normalization is True: x_train = normalization(apply_activation(x_train, activation_potentiation))
|
77
|
+
elif auto_normalization is False: x_train = apply_activation(x_train, activation_potentiation)
|
78
78
|
else: raise ValueError('normalization parameter only be True or False')
|
79
79
|
|
80
80
|
weight += y_train.T @ x_train
|
@@ -83,7 +83,7 @@ def fit(
|
|
83
83
|
|
84
84
|
|
85
85
|
def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=None, batch_size=1, pop_size=None,
|
86
|
-
neural_web_history=False, show_current_activations=False,
|
86
|
+
neural_web_history=False, show_current_activations=False, auto_normalization=False,
|
87
87
|
neurons_history=False, early_stop=False, loss='categorical_crossentropy', show_history=False,
|
88
88
|
interval=33.33, target_acc=None, target_loss=None,
|
89
89
|
start_this_act=None, start_this_W=None, dtype=cp.float32, memory='gpu'):
|
@@ -136,7 +136,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
|
|
136
136
|
|
137
137
|
loss (str, optional): For visualizing and monitoring. PLAN neural networks doesn't need any loss function in training. options: ('categorical_crossentropy' or 'binary_crossentropy') Default is 'categorical_crossentropy'.
|
138
138
|
|
139
|
-
|
139
|
+
auto_normalization (bool, optional): Normalization may solves overflow problem. Default: False
|
140
140
|
|
141
141
|
interval (int, optional): The interval at which evaluations are conducted during training. (33.33 = 30 FPS, 16.67 = 60 FPS) Default is 100.
|
142
142
|
|
@@ -242,7 +242,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
|
|
242
242
|
|
243
243
|
if fit_start is True and i == 0 and j < activation_potentiation_len:
|
244
244
|
act_pop[j] = activation_potentiation[j]
|
245
|
-
W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[j],
|
245
|
+
W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[j], auto_normalization=auto_normalization, dtype=dtype)
|
246
246
|
weight_pop[j] = W
|
247
247
|
|
248
248
|
model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], activation_potentiation=act_pop[j])
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.3.
|
3
|
+
Version: 4.3.9b2
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=Xq17ymoPeZ0UU0jM2XmXY2oG85-nGR6-4scDvbFco4I,641
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
4
4
|
pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
|
|
11
11
|
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
12
12
|
pyerualjetwork/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
|
13
13
|
pyerualjetwork/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
|
14
|
-
pyerualjetwork/plan.py,sha256=
|
15
|
-
pyerualjetwork/plan_cuda.py,sha256=
|
14
|
+
pyerualjetwork/plan.py,sha256=yqtiPUTpvO-Ty8SRJd5RFdbIKMgGGGkMVxdgbVHhfjQ,23503
|
15
|
+
pyerualjetwork/plan_cuda.py,sha256=4_AXa1IvDcqvHiK7CKbQXJBlO-UP6eVtK-ubDHmLGWk,24395
|
16
16
|
pyerualjetwork/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
|
17
17
|
pyerualjetwork/planeat_cuda.py,sha256=SG7Oq1F2m3lJBbG9cgmu7q_ApmwSn2SvTpcbtEVAoDE,37630
|
18
18
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
19
|
pyerualjetwork/visualizations.py,sha256=08O5uEewuYiovZRX1uHWEHjn19LcnhndWYvqVN74xs0,28290
|
20
20
|
pyerualjetwork/visualizations_cuda.py,sha256=PYRqj4QYUbuYMYcNwO8yaTPB-jK7E6kZHhTrAi0lwPU,28749
|
21
|
-
pyerualjetwork-4.3.
|
22
|
-
pyerualjetwork-4.3.
|
23
|
-
pyerualjetwork-4.3.
|
24
|
-
pyerualjetwork-4.3.
|
21
|
+
pyerualjetwork-4.3.9b2.dist-info/METADATA,sha256=AQn9V-32uZrqHfQXYB0DBx47o_K5-dBBhGzCKysiKgw,7476
|
22
|
+
pyerualjetwork-4.3.9b2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
23
|
+
pyerualjetwork-4.3.9b2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
24
|
+
pyerualjetwork-4.3.9b2.dist-info/RECORD,,
|
File without changes
|
File without changes
|