pyerualjetwork 4.3.9b0__py3-none-any.whl → 4.3.9b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.9b0"
1
+ __version__ = "4.3.9b2"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
pyerualjetwork/plan.py CHANGED
@@ -44,7 +44,7 @@ def fit(
44
44
  y_train,
45
45
  activation_potentiation=['linear'],
46
46
  W=None,
47
- normalization=False,
47
+ auto_normalization=False,
48
48
  dtype=np.float32
49
49
  ):
50
50
  """
@@ -60,7 +60,7 @@ def fit(
60
60
 
61
61
  W (numpy.ndarray): If you want to re-continue or update model
62
62
 
63
- normalization (bool, optional): Normalization may solves overflow problem. Default: False
63
+ auto_normalization (bool, optional): Normalization may solves overflow problem. Default: False
64
64
 
65
65
  dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
66
66
 
@@ -74,8 +74,8 @@ def fit(
74
74
 
75
75
  weight = np.zeros((len(y_train[0]), len(x_train[0].ravel()))).astype(dtype, copy=False) if W is None else W
76
76
 
77
- if normalization is True: x_train = normalization(apply_activation(x_train, activation_potentiation))
78
- elif normalization is False: x_train = apply_activation(x_train, activation_potentiation)
77
+ if auto_normalization is True: x_train = normalization(apply_activation(x_train, activation_potentiation))
78
+ elif auto_normalization is False: x_train = apply_activation(x_train, activation_potentiation)
79
79
  else: raise ValueError('normalization parameter only be True or False')
80
80
 
81
81
  weight += y_train.T @ x_train
@@ -84,7 +84,7 @@ def fit(
84
84
 
85
85
 
86
86
  def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=None, batch_size=1, pop_size=None,
87
- neural_web_history=False, show_current_activations=False, normalization=False,
87
+ neural_web_history=False, show_current_activations=False, auto_normalization=False,
88
88
  neurons_history=False, early_stop=False, loss='categorical_crossentropy', show_history=False,
89
89
  interval=33.33, target_acc=None, target_loss=None,
90
90
  start_this_act=None, start_this_W=None, dtype=np.float32):
@@ -136,6 +136,8 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
136
136
 
137
137
  show_history (bool, optional): If True, displays the training history after optimization. Default is False.
138
138
 
139
+ auto_normalization (bool, optional): Normalization may solves overflow problem. Default: False
140
+
139
141
  loss (str, optional): For visualizing and monitoring. PLAN neural networks doesn't need any loss function in training. options: ('categorical_crossentropy' or 'binary_crossentropy') Default is 'categorical_crossentropy'.
140
142
 
141
143
  interval (int, optional): The interval at which evaluations are conducted during training. (33.33 = 30 FPS, 16.67 = 60 FPS) Default is 100.
@@ -229,7 +231,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
229
231
 
230
232
  if fit_start is True and i == 0 and j < activation_potentiation_len:
231
233
  act_pop[j] = activation_potentiation[j]
232
- W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[j], normalization=normalization, dtype=dtype)
234
+ W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[j], auto_normalization=auto_normalization, dtype=dtype)
233
235
  weight_pop[j] = W
234
236
 
235
237
  model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], activation_potentiation=act_pop[j])
@@ -44,7 +44,7 @@ def fit(
44
44
  y_train,
45
45
  activation_potentiation=['linear'],
46
46
  W=None,
47
- normalization=False,
47
+ auto_normalization=False,
48
48
  dtype=cp.float32
49
49
  ):
50
50
  """
@@ -60,7 +60,7 @@ def fit(
60
60
 
61
61
  W (cupy.ndarray, optional): If you want to re-continue or update model
62
62
 
63
- normalization (bool, optional): Normalization may solves overflow problem. Default: False
63
+ auto_normalization (bool, optional): Normalization may solves overflow problem. Default: False
64
64
 
65
65
  dtype (cupy.dtype, optional): Data type for the arrays. cp.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
66
66
 
@@ -73,8 +73,8 @@ def fit(
73
73
 
74
74
  weight = cp.zeros((len(y_train[0]), len(x_train[0].ravel()))).astype(dtype, copy=False) if W is None else W
75
75
 
76
- if normalization is True: x_train = normalization(apply_activation(x_train, activation_potentiation))
77
- elif normalization is False: x_train = apply_activation(x_train, activation_potentiation)
76
+ if auto_normalization is True: x_train = normalization(apply_activation(x_train, activation_potentiation))
77
+ elif auto_normalization is False: x_train = apply_activation(x_train, activation_potentiation)
78
78
  else: raise ValueError('normalization parameter only be True or False')
79
79
 
80
80
  weight += y_train.T @ x_train
@@ -83,7 +83,7 @@ def fit(
83
83
 
84
84
 
85
85
  def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=None, batch_size=1, pop_size=None,
86
- neural_web_history=False, show_current_activations=False,
86
+ neural_web_history=False, show_current_activations=False, auto_normalization=False,
87
87
  neurons_history=False, early_stop=False, loss='categorical_crossentropy', show_history=False,
88
88
  interval=33.33, target_acc=None, target_loss=None,
89
89
  start_this_act=None, start_this_W=None, dtype=cp.float32, memory='gpu'):
@@ -136,6 +136,8 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
136
136
 
137
137
  loss (str, optional): For visualizing and monitoring. PLAN neural networks doesn't need any loss function in training. options: ('categorical_crossentropy' or 'binary_crossentropy') Default is 'categorical_crossentropy'.
138
138
 
139
+ auto_normalization (bool, optional): Normalization may solves overflow problem. Default: False
140
+
139
141
  interval (int, optional): The interval at which evaluations are conducted during training. (33.33 = 30 FPS, 16.67 = 60 FPS) Default is 100.
140
142
 
141
143
  target_acc (int, optional): The target accuracy to stop training early when achieved. Default is None.
@@ -240,7 +242,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
240
242
 
241
243
  if fit_start is True and i == 0 and j < activation_potentiation_len:
242
244
  act_pop[j] = activation_potentiation[j]
243
- W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[-1], dtype=dtype)
245
+ W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[j], auto_normalization=auto_normalization, dtype=dtype)
244
246
  weight_pop[j] = W
245
247
 
246
248
  model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], activation_potentiation=act_pop[j])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.9b0
3
+ Version: 4.3.9b2
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=mDFCFvWAMM7y9Es2Aopu_-rSQcBNfw0hhrdFX9xyCiw,641
1
+ pyerualjetwork/__init__.py,sha256=Xq17ymoPeZ0UU0jM2XmXY2oG85-nGR6-4scDvbFco4I,641
2
2
  pyerualjetwork/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
4
4
  pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
11
11
  pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
12
12
  pyerualjetwork/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
13
13
  pyerualjetwork/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
14
- pyerualjetwork/plan.py,sha256=rd6BOj6xU7m-nQgLQ0tH5oY5a78tTwW5spsX4niFUKU,23362
15
- pyerualjetwork/plan_cuda.py,sha256=NJq_KSbl7Q7wlie2NH7ApwJ36hfmzocXra36tgcO28w,24197
14
+ pyerualjetwork/plan.py,sha256=yqtiPUTpvO-Ty8SRJd5RFdbIKMgGGGkMVxdgbVHhfjQ,23503
15
+ pyerualjetwork/plan_cuda.py,sha256=4_AXa1IvDcqvHiK7CKbQXJBlO-UP6eVtK-ubDHmLGWk,24395
16
16
  pyerualjetwork/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
17
17
  pyerualjetwork/planeat_cuda.py,sha256=SG7Oq1F2m3lJBbG9cgmu7q_ApmwSn2SvTpcbtEVAoDE,37630
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=08O5uEewuYiovZRX1uHWEHjn19LcnhndWYvqVN74xs0,28290
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=PYRqj4QYUbuYMYcNwO8yaTPB-jK7E6kZHhTrAi0lwPU,28749
21
- pyerualjetwork-4.3.9b0.dist-info/METADATA,sha256=pCQACKItpMxqwMfYJl3EHXsa7kA_ZwkWuz8e-FtDKcE,7476
22
- pyerualjetwork-4.3.9b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
- pyerualjetwork-4.3.9b0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
- pyerualjetwork-4.3.9b0.dist-info/RECORD,,
21
+ pyerualjetwork-4.3.9b2.dist-info/METADATA,sha256=AQn9V-32uZrqHfQXYB0DBx47o_K5-dBBhGzCKysiKgw,7476
22
+ pyerualjetwork-4.3.9b2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
+ pyerualjetwork-4.3.9b2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
+ pyerualjetwork-4.3.9b2.dist-info/RECORD,,