pyerualjetwork 4.3.9.dev0__py3-none-any.whl → 4.3.9.dev2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.9dev0"
1
+ __version__ = "4.3.9dev2"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
@@ -10,22 +10,30 @@ def diversity_score(population):
10
10
  individuals in the population
11
11
  :return: The function returns the diversity score,
12
12
  which is a measure of how spread out or diverse the population is in terms of their characteristics.
13
-
14
13
  """
15
-
16
14
  if len(population) < 2:
17
15
  return 0
18
-
16
+
19
17
  distances = pdist(population, metric='euclidean')
20
18
 
19
+ if np.isnan(distances).any() or np.any(distances == 0):
20
+ distances = np.maximum(distances, 1e-10)
21
21
  avg_distance = np.mean(distances)
22
-
22
+
23
+ if population.shape[1] == 0:
24
+ return 0
25
+
23
26
  max_possible_distance = np.sqrt(population.shape[1])
27
+
28
+ if max_possible_distance == 0:
29
+ max_possible_distance = 1e-10
30
+
24
31
  diversity = avg_distance / max_possible_distance
25
32
 
26
33
  return diversity
27
34
 
28
35
 
36
+
29
37
  def hybrid_accuracy_confidence(y_true, y_pred, diversity_score, accuracy, alpha=2, beta=1.5, lambda_div=0.05):
30
38
  """
31
39
  The function calculates a fitness score based on accuracy, margin loss, and diversity score using
pyerualjetwork/plan.py CHANGED
@@ -155,7 +155,7 @@ def learner(x_train, y_train, optimizer, fitness, fit_start=True, gen=None, batc
155
155
  interval (int, optional): The interval at which evaluations are conducted during training. (33.33 = 30 FPS, 16.67 = 60 FPS) Default is 100.
156
156
 
157
157
  target_acc (int, optional): The target accuracy to stop training early when achieved. Default is None.
158
-
158
+
159
159
  start_this_act (list, optional): To resume a previously canceled or interrupted training from where it left off, or to continue from that point with a different strategy, provide the list of activation functions selected up to the learned portion to this parameter. Default is None
160
160
 
161
161
  start_this_W (numpy.array, optional): To resume a previously canceled or interrupted training from where it left off, or to continue from that point with a different strategy, provide the weight matrix of this genome. Default is None
@@ -305,7 +305,7 @@ def learner(x_train, y_train, optimizer, fitness, fit_start=True, gen=None, batc
305
305
  print(f'Fitness Value: ', fit_score, '\n')
306
306
 
307
307
  postfix_dict[f"{data} Accuracy"] = np.round(train_model[get_acc()], 4)
308
- postfix_dict[f"{data} Fitness"] = np.round(fit_score, 4)
308
+ postfix_dict[f"{data} Fitness"] = np.round(best_fit, 4)
309
309
  progress.set_postfix(postfix_dict)
310
310
  # Display final visualizations
311
311
  display_visualizations_for_learner(viz_objects, best_weights, data, best_acc,
@@ -325,7 +325,7 @@ def learner(x_train, y_train, optimizer, fitness, fit_start=True, gen=None, batc
325
325
  print(f'Fitness Value: ', fit_score, '\n')
326
326
 
327
327
  postfix_dict[f"{data} Accuracy"] = np.round(train_model[get_acc()], 4)
328
- postfix_dict[f"{data} Fitness"] = np.round(fit_score, 4)
328
+ postfix_dict[f"{data} Fitness"] = np.round(best_fit, 4)
329
329
  progress.set_postfix(postfix_dict)
330
330
 
331
331
  best_acc_per_gen_list.append(train_model[get_acc()])
@@ -333,7 +333,7 @@ def learner(x_train, y_train, optimizer, fitness, fit_start=True, gen=None, batc
333
333
 
334
334
  else:
335
335
  best_acc_per_gen_list.append(best_acc)
336
- fit_list.append(fit_score)
336
+ fit_list.append(best_fit)
337
337
 
338
338
  weight_pop, act_pop = optimizer(np.array(weight_pop, copy=False, dtype=dtype), act_pop, i, np.array(target_pop, dtype=dtype, copy=False), bar_status=False)
339
339
  target_pop = []
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.9.dev0
3
+ Version: 4.3.9.dev2
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,9 +1,9 @@
1
- pyerualjetwork/__init__.py,sha256=ah3LCRDswv6Jq7cOJUfJyqj3GFcRmOXOB7ocvYOHzdY,643
1
+ pyerualjetwork/__init__.py,sha256=9eOTCzpFVUX9DY_9CL8Cw_Z88H6-tD0Jnw8a-gKKiWg,643
2
2
  pyerualjetwork/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
4
4
  pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
5
5
  pyerualjetwork/data_operations_cuda.py,sha256=ZcjmLXE1-HVwedextYdJZ1rgrns1OfSekzFpr1a9m6o,17625
6
- pyerualjetwork/fitness_functions.py,sha256=EkBCRWr70Y1yG0bc4styDUDkVxLwJ0wjirLKPh74-9U,3835
6
+ pyerualjetwork/fitness_functions.py,sha256=0tj1Ri8x8PXR9cuZF_PaUF3mjgsys0IRAEKklipKxZA,4064
7
7
  pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
8
8
  pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
9
9
  pyerualjetwork/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
11
11
  pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
12
12
  pyerualjetwork/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
13
13
  pyerualjetwork/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
14
- pyerualjetwork/plan.py,sha256=BmZ6198w87kCfeUG2co3ON1HXgi9dY6s6wgj0gw-5iE,20471
14
+ pyerualjetwork/plan.py,sha256=vps6EHyHoFWBlp3g5BF3ygD4vIkFvvRsmB7xS0IJ70E,20452
15
15
  pyerualjetwork/plan_cuda.py,sha256=DCKWStOZhBq-NYKA2BQTKe3YgvDYuGtujtIr56ZBjiw,24477
16
16
  pyerualjetwork/planeat.py,sha256=OxwSjfSFPwh7kVrhnuAkr8Lrk73GB-Wk2ajUFIfZcbQ,37556
17
17
  pyerualjetwork/planeat_cuda.py,sha256=aTdBmhJeIKC58pssODtqVsdOtJP7W6TRmVyGHp7k_CM,37612
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=08O5uEewuYiovZRX1uHWEHjn19LcnhndWYvqVN74xs0,28290
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=PYRqj4QYUbuYMYcNwO8yaTPB-jK7E6kZHhTrAi0lwPU,28749
21
- pyerualjetwork-4.3.9.dev0.dist-info/METADATA,sha256=CUgYnFLvKwBq75RPhGvgWDBjX1lNEksXQqOrDPdSYwg,7479
22
- pyerualjetwork-4.3.9.dev0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
- pyerualjetwork-4.3.9.dev0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
- pyerualjetwork-4.3.9.dev0.dist-info/RECORD,,
21
+ pyerualjetwork-4.3.9.dev2.dist-info/METADATA,sha256=Z0nThYRtlJKsScG6ZRZYdPcBPU_GfIcxtE8oz1nFVRI,7479
22
+ pyerualjetwork-4.3.9.dev2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
+ pyerualjetwork-4.3.9.dev2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
+ pyerualjetwork-4.3.9.dev2.dist-info/RECORD,,