pyerualjetwork 4.3.8.dev8__py3-none-any.whl → 4.3.8.dev9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.8dev8"
1
+ __version__ = "4.3.8dev9"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.8.dev8
3
+ Version: 4.3.8.dev9
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=zfc7DhJ830NhikbydkRIIf0Kbji_veR8aEskZeY6XEo,643
1
+ pyerualjetwork/__init__.py,sha256=G8OqEzKVAHRAxqoWm8c1I1TiiZyk0qaKDDFYDPSG4rY,643
2
2
  pyerualjetwork/activation_functions.py,sha256=AR91fQV2W2rc-Qb4Yp7b8ucYpGjwyQUewO-M-lyEMs8,7729
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=ztIw6rMR4t1289_TPIGYwE6qarl_YbSOGj5Ep3rUMqs,11803
4
4
  pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
@@ -18,7 +18,7 @@ pyerualjetwork/planeat_cuda.py,sha256=QNHCQLkR0MNFqyN2iHAtC7cbf8qZiD3p_54YH3lnMF
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=VL00sX2DZz83F__PyEJH9s1LizuXpOBzWjnoSjMJIJ0,28770
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
21
- pyerualjetwork_afterburner/__init__.py,sha256=rurrD8ySN0khMCA992NnKKgZYs01mFhyZprHSE-7ROw,655
21
+ pyerualjetwork_afterburner/__init__.py,sha256=IyLYEXnGrr286xZo-Hz2NbmHWHCAnN2dXJ3BxelSJMI,655
22
22
  pyerualjetwork_afterburner/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
23
23
  pyerualjetwork_afterburner/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
24
24
  pyerualjetwork_afterburner/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
@@ -34,11 +34,11 @@ pyerualjetwork_afterburner/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI
34
34
  pyerualjetwork_afterburner/plan.py,sha256=EOXngujG7DQRf3cooFigKB7heQsEoK96JtrcKivT_pE,22449
35
35
  pyerualjetwork_afterburner/plan_cuda.py,sha256=fg5YunEuBE7sK6q9paP_yAGONr9x0e19oF0J0DucejM,23380
36
36
  pyerualjetwork_afterburner/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
37
- pyerualjetwork_afterburner/planeat_cuda.py,sha256=IS1d36f7d3aRcGH_7ne3gEnG67MAOyYFs2jnHBT-coI,39672
37
+ pyerualjetwork_afterburner/planeat_cuda.py,sha256=DhRUz8-6BRKEHEtBzEj4Pb1N0YM66C7wCnj49KoYqQk,39578
38
38
  pyerualjetwork_afterburner/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
39
39
  pyerualjetwork_afterburner/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
40
40
  pyerualjetwork_afterburner/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
41
- pyerualjetwork-4.3.8.dev8.dist-info/METADATA,sha256=GefOazSptWtgfbBRqQfm8S1MwAGh_kuaHu0MydzllUE,8384
42
- pyerualjetwork-4.3.8.dev8.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
43
- pyerualjetwork-4.3.8.dev8.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
44
- pyerualjetwork-4.3.8.dev8.dist-info/RECORD,,
41
+ pyerualjetwork-4.3.8.dev9.dist-info/METADATA,sha256=l02g36Sjd1Pd5L-w62nwEEJzg8MCoheuuBdi9C0pisQ,8384
42
+ pyerualjetwork-4.3.8.dev9.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
43
+ pyerualjetwork-4.3.8.dev9.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
44
+ pyerualjetwork-4.3.8.dev9.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.8dev8-afterburner"
1
+ __version__ = "4.3.8dev9-afterburner"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
@@ -299,28 +299,27 @@ def evolver(weights,
299
299
  mutated_act = bad_activations.copy()
300
300
 
301
301
  if __name__ == '__main__':
302
- with mp.Pool() as pool:
303
- process_func = partial(process_single, policy=policy, best_weight=best_weight,
304
- best_activations=best_activations, good_weights=good_weights,
305
- good_activations=good_activations, bad_weights=bad_weights,
306
- bad_activations=bad_activations, best_fitness=best_fitness,
307
- normalized_fitness=normalized_fitness, child_W=child_W,
308
- child_act=child_act, mutated_W=mutated_W, mutated_act=mutated_act,
309
- cross_over_mode=cross_over_mode,
310
- activation_selection_add_prob=activation_selection_add_prob,
311
- activation_selection_change_prob=activation_selection_change_prob,
312
- activation_selection_threshold=activation_selection_threshold,
313
- bad_genomes_selection_prob=bad_genomes_selection_prob,
314
- fitness_bias=fitness_bias,
315
- epsilon=epsilon,
316
- bad_genomes_mutation_prob=bad_genomes_mutation_prob,
317
- activation_mutate_prob=activation_mutate_prob,
318
- activation_mutate_add_prob=activation_mutate_add_prob,
319
- activation_mutate_delete_prob=activation_mutate_delete_prob,
320
- activation_mutate_change_prob=activation_mutate_change_prob,
321
- weight_mutate_prob=weight_mutate_prob,
322
- weight_mutate_threshold=weight_mutate_threshold,
323
- activation_mutate_threshold=activation_mutate_threshold)
302
+ process_func = partial(process_single, policy=policy, best_weight=best_weight,
303
+ best_activations=best_activations, good_weights=good_weights,
304
+ good_activations=good_activations, bad_weights=bad_weights,
305
+ bad_activations=bad_activations, best_fitness=best_fitness,
306
+ normalized_fitness=normalized_fitness, child_W=child_W,
307
+ child_act=child_act, mutated_W=mutated_W, mutated_act=mutated_act,
308
+ cross_over_mode=cross_over_mode,
309
+ activation_selection_add_prob=activation_selection_add_prob,
310
+ activation_selection_change_prob=activation_selection_change_prob,
311
+ activation_selection_threshold=activation_selection_threshold,
312
+ bad_genomes_selection_prob=bad_genomes_selection_prob,
313
+ fitness_bias=fitness_bias,
314
+ epsilon=epsilon,
315
+ bad_genomes_mutation_prob=bad_genomes_mutation_prob,
316
+ activation_mutate_prob=activation_mutate_prob,
317
+ activation_mutate_add_prob=activation_mutate_add_prob,
318
+ activation_mutate_delete_prob=activation_mutate_delete_prob,
319
+ activation_mutate_change_prob=activation_mutate_change_prob,
320
+ weight_mutate_prob=weight_mutate_prob,
321
+ weight_mutate_threshold=weight_mutate_threshold,
322
+ activation_mutate_threshold=activation_mutate_threshold)
324
323
 
325
324
  with mp.Pool() as pool:
326
325
  results = pool.map(process_func, range(len(bad_weights)))