pyerualjetwork 4.3.8.dev8__py3-none-any.whl → 4.3.8.dev10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.8dev8"
1
+ __version__ = "4.3.8dev10"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.8.dev8
3
+ Version: 4.3.8.dev10
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=zfc7DhJ830NhikbydkRIIf0Kbji_veR8aEskZeY6XEo,643
1
+ pyerualjetwork/__init__.py,sha256=wIkjXAYazsVwpUIrmUV8JIppM_7Bl9IHlngJjO1mEx8,644
2
2
  pyerualjetwork/activation_functions.py,sha256=AR91fQV2W2rc-Qb4Yp7b8ucYpGjwyQUewO-M-lyEMs8,7729
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=ztIw6rMR4t1289_TPIGYwE6qarl_YbSOGj5Ep3rUMqs,11803
4
4
  pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
@@ -18,7 +18,7 @@ pyerualjetwork/planeat_cuda.py,sha256=QNHCQLkR0MNFqyN2iHAtC7cbf8qZiD3p_54YH3lnMF
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=VL00sX2DZz83F__PyEJH9s1LizuXpOBzWjnoSjMJIJ0,28770
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
21
- pyerualjetwork_afterburner/__init__.py,sha256=rurrD8ySN0khMCA992NnKKgZYs01mFhyZprHSE-7ROw,655
21
+ pyerualjetwork_afterburner/__init__.py,sha256=YqmaG5JVVPFrvNZw0Nz3_i6Z-oJ5LUoqAUreHApWQVA,656
22
22
  pyerualjetwork_afterburner/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
23
23
  pyerualjetwork_afterburner/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
24
24
  pyerualjetwork_afterburner/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
@@ -34,11 +34,11 @@ pyerualjetwork_afterburner/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI
34
34
  pyerualjetwork_afterburner/plan.py,sha256=EOXngujG7DQRf3cooFigKB7heQsEoK96JtrcKivT_pE,22449
35
35
  pyerualjetwork_afterburner/plan_cuda.py,sha256=fg5YunEuBE7sK6q9paP_yAGONr9x0e19oF0J0DucejM,23380
36
36
  pyerualjetwork_afterburner/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
37
- pyerualjetwork_afterburner/planeat_cuda.py,sha256=IS1d36f7d3aRcGH_7ne3gEnG67MAOyYFs2jnHBT-coI,39672
37
+ pyerualjetwork_afterburner/planeat_cuda.py,sha256=uDzaku2S80gDyNb2dbnagr4o0j32k2BZ9d5Pjfz4I_w,39422
38
38
  pyerualjetwork_afterburner/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
39
39
  pyerualjetwork_afterburner/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
40
40
  pyerualjetwork_afterburner/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
41
- pyerualjetwork-4.3.8.dev8.dist-info/METADATA,sha256=GefOazSptWtgfbBRqQfm8S1MwAGh_kuaHu0MydzllUE,8384
42
- pyerualjetwork-4.3.8.dev8.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
43
- pyerualjetwork-4.3.8.dev8.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
44
- pyerualjetwork-4.3.8.dev8.dist-info/RECORD,,
41
+ pyerualjetwork-4.3.8.dev10.dist-info/METADATA,sha256=3jAMjd88JArKdI2Qtdpw-RIrDpG-gkC5TlciDuqwWns,8385
42
+ pyerualjetwork-4.3.8.dev10.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
43
+ pyerualjetwork-4.3.8.dev10.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
44
+ pyerualjetwork-4.3.8.dev10.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.8dev8-afterburner"
1
+ __version__ = "4.3.8dev10-afterburner"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
@@ -286,7 +286,6 @@ def evolver(weights,
286
286
 
287
287
  bar_format = loading_bars()[0]
288
288
 
289
- if bar_status: progress = initialize_loading_bar(len(bad_weights), desc="GENERATION: " + str(what_gen), bar_format=bar_format, ncols=50)
290
289
  normalized_fitness = normalization(fitness, dtype=dtype)
291
290
 
292
291
  best_fitness = normalized_fitness[-1]
@@ -299,37 +298,36 @@ def evolver(weights,
299
298
  mutated_act = bad_activations.copy()
300
299
 
301
300
  if __name__ == '__main__':
302
- with mp.Pool() as pool:
303
- process_func = partial(process_single, policy=policy, best_weight=best_weight,
304
- best_activations=best_activations, good_weights=good_weights,
305
- good_activations=good_activations, bad_weights=bad_weights,
306
- bad_activations=bad_activations, best_fitness=best_fitness,
307
- normalized_fitness=normalized_fitness, child_W=child_W,
308
- child_act=child_act, mutated_W=mutated_W, mutated_act=mutated_act,
309
- cross_over_mode=cross_over_mode,
310
- activation_selection_add_prob=activation_selection_add_prob,
311
- activation_selection_change_prob=activation_selection_change_prob,
312
- activation_selection_threshold=activation_selection_threshold,
313
- bad_genomes_selection_prob=bad_genomes_selection_prob,
314
- fitness_bias=fitness_bias,
315
- epsilon=epsilon,
316
- bad_genomes_mutation_prob=bad_genomes_mutation_prob,
317
- activation_mutate_prob=activation_mutate_prob,
318
- activation_mutate_add_prob=activation_mutate_add_prob,
319
- activation_mutate_delete_prob=activation_mutate_delete_prob,
320
- activation_mutate_change_prob=activation_mutate_change_prob,
321
- weight_mutate_prob=weight_mutate_prob,
322
- weight_mutate_threshold=weight_mutate_threshold,
323
- activation_mutate_threshold=activation_mutate_threshold)
301
+ process_func = partial(process_single, policy=policy, best_weight=best_weight,
302
+ best_activations=best_activations, good_weights=good_weights,
303
+ good_activations=good_activations, bad_weights=bad_weights,
304
+ bad_activations=bad_activations, best_fitness=best_fitness,
305
+ normalized_fitness=normalized_fitness, child_W=child_W,
306
+ child_act=child_act, mutated_W=mutated_W, mutated_act=mutated_act,
307
+ cross_over_mode=cross_over_mode,
308
+ activation_selection_add_prob=activation_selection_add_prob,
309
+ activation_selection_change_prob=activation_selection_change_prob,
310
+ activation_selection_threshold=activation_selection_threshold,
311
+ bad_genomes_selection_prob=bad_genomes_selection_prob,
312
+ fitness_bias=fitness_bias,
313
+ epsilon=epsilon,
314
+ bad_genomes_mutation_prob=bad_genomes_mutation_prob,
315
+ activation_mutate_prob=activation_mutate_prob,
316
+ activation_mutate_add_prob=activation_mutate_add_prob,
317
+ activation_mutate_delete_prob=activation_mutate_delete_prob,
318
+ activation_mutate_change_prob=activation_mutate_change_prob,
319
+ weight_mutate_prob=weight_mutate_prob,
320
+ weight_mutate_threshold=weight_mutate_threshold,
321
+ activation_mutate_threshold=activation_mutate_threshold)
324
322
 
325
323
  with mp.Pool() as pool:
326
324
  results = pool.map(process_func, range(len(bad_weights)))
327
325
 
328
- for i, new_child_W, new_child_act, new_mutated_W, new_mutated_act in results:
329
- child_W[i] = new_child_W
330
- child_act[i] = new_child_act
331
- mutated_W[i] = new_mutated_W
332
- mutated_act[i] = new_mutated_act
326
+ for i, new_child_W, new_child_act, new_mutated_W, new_mutated_act in results:
327
+ child_W[i] = new_child_W
328
+ child_act[i] = new_child_act
329
+ mutated_W[i] = new_mutated_W
330
+ mutated_act[i] = new_mutated_act
333
331
 
334
332
  child_W[0] = best_weight
335
333
  child_act[0] = best_activations