pyerualjetwork 4.3.8.dev6__py3-none-any.whl → 4.3.8.dev8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- {pyerualjetwork-4.3.8.dev6.dist-info → pyerualjetwork-4.3.8.dev8.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.3.8.dev6.dist-info → pyerualjetwork-4.3.8.dev8.dist-info}/RECORD +7 -7
- pyerualjetwork_afterburner/__init__.py +1 -1
- pyerualjetwork_afterburner/planeat_cuda.py +81 -61
- {pyerualjetwork-4.3.8.dev6.dist-info → pyerualjetwork-4.3.8.dev8.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.3.8.dev6.dist-info → pyerualjetwork-4.3.8.dev8.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.3.
|
1
|
+
__version__ = "4.3.8dev8"
|
2
2
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
3
3
|
|
4
4
|
def print_version(__version__):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.3.8.
|
3
|
+
Version: 4.3.8.dev8
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=zfc7DhJ830NhikbydkRIIf0Kbji_veR8aEskZeY6XEo,643
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=AR91fQV2W2rc-Qb4Yp7b8ucYpGjwyQUewO-M-lyEMs8,7729
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=ztIw6rMR4t1289_TPIGYwE6qarl_YbSOGj5Ep3rUMqs,11803
|
4
4
|
pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
@@ -18,7 +18,7 @@ pyerualjetwork/planeat_cuda.py,sha256=QNHCQLkR0MNFqyN2iHAtC7cbf8qZiD3p_54YH3lnMF
|
|
18
18
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
19
|
pyerualjetwork/visualizations.py,sha256=VL00sX2DZz83F__PyEJH9s1LizuXpOBzWjnoSjMJIJ0,28770
|
20
20
|
pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
21
|
-
pyerualjetwork_afterburner/__init__.py,sha256=
|
21
|
+
pyerualjetwork_afterburner/__init__.py,sha256=rurrD8ySN0khMCA992NnKKgZYs01mFhyZprHSE-7ROw,655
|
22
22
|
pyerualjetwork_afterburner/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
|
23
23
|
pyerualjetwork_afterburner/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
24
24
|
pyerualjetwork_afterburner/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
@@ -34,11 +34,11 @@ pyerualjetwork_afterburner/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI
|
|
34
34
|
pyerualjetwork_afterburner/plan.py,sha256=EOXngujG7DQRf3cooFigKB7heQsEoK96JtrcKivT_pE,22449
|
35
35
|
pyerualjetwork_afterburner/plan_cuda.py,sha256=fg5YunEuBE7sK6q9paP_yAGONr9x0e19oF0J0DucejM,23380
|
36
36
|
pyerualjetwork_afterburner/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
|
37
|
-
pyerualjetwork_afterburner/planeat_cuda.py,sha256=
|
37
|
+
pyerualjetwork_afterburner/planeat_cuda.py,sha256=IS1d36f7d3aRcGH_7ne3gEnG67MAOyYFs2jnHBT-coI,39672
|
38
38
|
pyerualjetwork_afterburner/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
39
39
|
pyerualjetwork_afterburner/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
|
40
40
|
pyerualjetwork_afterburner/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
41
|
-
pyerualjetwork-4.3.8.
|
42
|
-
pyerualjetwork-4.3.8.
|
43
|
-
pyerualjetwork-4.3.8.
|
44
|
-
pyerualjetwork-4.3.8.
|
41
|
+
pyerualjetwork-4.3.8.dev8.dist-info/METADATA,sha256=GefOazSptWtgfbBRqQfm8S1MwAGh_kuaHu0MydzllUE,8384
|
42
|
+
pyerualjetwork-4.3.8.dev8.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
43
|
+
pyerualjetwork-4.3.8.dev8.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
|
44
|
+
pyerualjetwork-4.3.8.dev8.dist-info/RECORD,,
|
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.3.
|
1
|
+
__version__ = "4.3.8dev8-afterburner"
|
2
2
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
3
3
|
|
4
4
|
def print_version(__version__):
|
@@ -298,30 +298,38 @@ def evolver(weights,
|
|
298
298
|
mutated_W = cp.copy(bad_weights)
|
299
299
|
mutated_act = bad_activations.copy()
|
300
300
|
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
301
|
+
if __name__ == '__main__':
|
302
|
+
with mp.Pool() as pool:
|
303
|
+
process_func = partial(process_single, policy=policy, best_weight=best_weight,
|
304
|
+
best_activations=best_activations, good_weights=good_weights,
|
305
|
+
good_activations=good_activations, bad_weights=bad_weights,
|
306
|
+
bad_activations=bad_activations, best_fitness=best_fitness,
|
307
|
+
normalized_fitness=normalized_fitness, child_W=child_W,
|
308
|
+
child_act=child_act, mutated_W=mutated_W, mutated_act=mutated_act,
|
309
|
+
cross_over_mode=cross_over_mode,
|
310
|
+
activation_selection_add_prob=activation_selection_add_prob,
|
311
|
+
activation_selection_change_prob=activation_selection_change_prob,
|
312
|
+
activation_selection_threshold=activation_selection_threshold,
|
313
|
+
bad_genomes_selection_prob=bad_genomes_selection_prob,
|
314
|
+
fitness_bias=fitness_bias,
|
315
|
+
epsilon=epsilon,
|
316
|
+
bad_genomes_mutation_prob=bad_genomes_mutation_prob,
|
317
|
+
activation_mutate_prob=activation_mutate_prob,
|
318
|
+
activation_mutate_add_prob=activation_mutate_add_prob,
|
319
|
+
activation_mutate_delete_prob=activation_mutate_delete_prob,
|
320
|
+
activation_mutate_change_prob=activation_mutate_change_prob,
|
321
|
+
weight_mutate_prob=weight_mutate_prob,
|
322
|
+
weight_mutate_threshold=weight_mutate_threshold,
|
323
|
+
activation_mutate_threshold=activation_mutate_threshold)
|
324
|
+
|
325
|
+
with mp.Pool() as pool:
|
326
|
+
results = pool.map(process_func, range(len(bad_weights)))
|
327
|
+
|
328
|
+
for i, new_child_W, new_child_act, new_mutated_W, new_mutated_act in results:
|
329
|
+
child_W[i] = new_child_W
|
330
|
+
child_act[i] = new_child_act
|
331
|
+
mutated_W[i] = new_mutated_W
|
332
|
+
mutated_act[i] = new_mutated_act
|
325
333
|
|
326
334
|
child_W[0] = best_weight
|
327
335
|
child_act[0] = best_activations
|
@@ -366,39 +374,47 @@ def evolver(weights,
|
|
366
374
|
return weights, activation_potentiations
|
367
375
|
|
368
376
|
|
369
|
-
def process_single(i, policy, best_weight, best_activations,
|
370
|
-
|
371
|
-
|
372
|
-
|
373
|
-
|
374
|
-
|
375
|
-
|
376
|
-
|
377
|
-
|
377
|
+
def process_single(i, policy, best_weight, best_activations,
|
378
|
+
good_weights, good_activations,
|
379
|
+
bad_weights, bad_activations,
|
380
|
+
best_fitness, normalized_fitness,
|
381
|
+
cross_over_mode,
|
382
|
+
activation_selection_add_prob, activation_selection_change_prob,
|
383
|
+
activation_selection_threshold,
|
384
|
+
bad_genomes_selection_prob, fitness_bias,
|
385
|
+
epsilon, bad_genomes_mutation_prob,
|
386
|
+
activation_mutate_prob, activation_mutate_add_prob,
|
387
|
+
activation_mutate_delete_prob, activation_mutate_change_prob,
|
388
|
+
weight_mutate_prob, weight_mutate_threshold,
|
389
|
+
activation_mutate_threshold):
|
390
|
+
|
378
391
|
if policy == 'aggressive':
|
379
392
|
first_parent_W = best_weight
|
380
393
|
first_parent_act = best_activations
|
381
394
|
elif policy == 'explorer':
|
382
395
|
first_parent_W = good_weights[i]
|
383
396
|
first_parent_act = good_activations[i]
|
384
|
-
else:
|
397
|
+
else:
|
385
398
|
raise ValueError("policy parameter must be: 'aggressive' or 'explorer'")
|
386
399
|
|
387
|
-
second_parent_W, second_parent_act, s_i = second_parent_selection(
|
388
|
-
|
389
|
-
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
|
401
|
-
|
400
|
+
second_parent_W, second_parent_act, s_i = second_parent_selection(
|
401
|
+
good_weights, bad_weights, good_activations, bad_activations, bad_genomes_selection_prob)
|
402
|
+
|
403
|
+
new_child_W, new_child_act = cross_over(
|
404
|
+
first_parent_W,
|
405
|
+
second_parent_W,
|
406
|
+
first_parent_act,
|
407
|
+
second_parent_act,
|
408
|
+
cross_over_mode=cross_over_mode,
|
409
|
+
activation_selection_add_prob=activation_selection_add_prob,
|
410
|
+
activation_selection_change_prob=activation_selection_change_prob,
|
411
|
+
activation_selection_threshold=activation_selection_threshold,
|
412
|
+
bad_genomes_selection_prob=bad_genomes_selection_prob,
|
413
|
+
first_parent_fitness=best_fitness,
|
414
|
+
fitness_bias=fitness_bias,
|
415
|
+
second_parent_fitness=normalized_fitness[s_i],
|
416
|
+
epsilon=epsilon
|
417
|
+
)
|
402
418
|
|
403
419
|
mutation_prob = random.uniform(0, 1)
|
404
420
|
if mutation_prob > bad_genomes_mutation_prob:
|
@@ -410,18 +426,22 @@ def process_single(i, policy, best_weight, best_activations, good_weights, good_
|
|
410
426
|
genome_act = bad_activations[i]
|
411
427
|
fitness_index = i
|
412
428
|
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
422
|
-
|
423
|
-
|
424
|
-
|
429
|
+
new_mutated_W, new_mutated_act = mutation(
|
430
|
+
genome_W,
|
431
|
+
genome_act,
|
432
|
+
activation_mutate_prob=activation_mutate_prob,
|
433
|
+
activation_add_prob=activation_mutate_add_prob,
|
434
|
+
activation_delete_prob=activation_mutate_delete_prob,
|
435
|
+
activation_change_prob=activation_mutate_change_prob,
|
436
|
+
weight_mutate_prob=weight_mutate_prob,
|
437
|
+
weight_mutate_threshold=weight_mutate_threshold,
|
438
|
+
genome_fitness=normalized_fitness[fitness_index],
|
439
|
+
activation_mutate_threshold=activation_mutate_threshold,
|
440
|
+
epsilon=epsilon
|
441
|
+
)
|
442
|
+
|
443
|
+
return (i, new_child_W, new_child_act, new_mutated_W, new_mutated_act)
|
444
|
+
|
425
445
|
|
426
446
|
def evaluate(x_population, weights, activation_potentiations):
|
427
447
|
"""
|
File without changes
|
File without changes
|