pyerualjetwork 4.3.8.dev5__py3-none-any.whl → 4.3.8.dev7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- {pyerualjetwork-4.3.8.dev5.dist-info → pyerualjetwork-4.3.8.dev7.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.3.8.dev5.dist-info → pyerualjetwork-4.3.8.dev7.dist-info}/RECORD +7 -7
- pyerualjetwork_afterburner/__init__.py +1 -1
- pyerualjetwork_afterburner/planeat_cuda.py +49 -26
- {pyerualjetwork-4.3.8.dev5.dist-info → pyerualjetwork-4.3.8.dev7.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.3.8.dev5.dist-info → pyerualjetwork-4.3.8.dev7.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.3.
|
1
|
+
__version__ = "4.3.8dev7"
|
2
2
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
3
3
|
|
4
4
|
def print_version(__version__):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.3.8.
|
3
|
+
Version: 4.3.8.dev7
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=HowxR2llE7gO7c6BoUT1yyLWgSoisDOa2ylmIi8igVs,643
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=AR91fQV2W2rc-Qb4Yp7b8ucYpGjwyQUewO-M-lyEMs8,7729
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=ztIw6rMR4t1289_TPIGYwE6qarl_YbSOGj5Ep3rUMqs,11803
|
4
4
|
pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
@@ -18,7 +18,7 @@ pyerualjetwork/planeat_cuda.py,sha256=QNHCQLkR0MNFqyN2iHAtC7cbf8qZiD3p_54YH3lnMF
|
|
18
18
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
19
|
pyerualjetwork/visualizations.py,sha256=VL00sX2DZz83F__PyEJH9s1LizuXpOBzWjnoSjMJIJ0,28770
|
20
20
|
pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
21
|
-
pyerualjetwork_afterburner/__init__.py,sha256=
|
21
|
+
pyerualjetwork_afterburner/__init__.py,sha256=Mag29KN2NawRveT49RB0KDofeL86cS0BZFK9qRatYiA,655
|
22
22
|
pyerualjetwork_afterburner/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
|
23
23
|
pyerualjetwork_afterburner/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
24
24
|
pyerualjetwork_afterburner/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
@@ -34,11 +34,11 @@ pyerualjetwork_afterburner/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI
|
|
34
34
|
pyerualjetwork_afterburner/plan.py,sha256=EOXngujG7DQRf3cooFigKB7heQsEoK96JtrcKivT_pE,22449
|
35
35
|
pyerualjetwork_afterburner/plan_cuda.py,sha256=fg5YunEuBE7sK6q9paP_yAGONr9x0e19oF0J0DucejM,23380
|
36
36
|
pyerualjetwork_afterburner/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
|
37
|
-
pyerualjetwork_afterburner/planeat_cuda.py,sha256=
|
37
|
+
pyerualjetwork_afterburner/planeat_cuda.py,sha256=BCVF-SIj1tynmm-g2D20qCAwujU7IfvPxLO24c_LsTI,40028
|
38
38
|
pyerualjetwork_afterburner/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
39
39
|
pyerualjetwork_afterburner/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
|
40
40
|
pyerualjetwork_afterburner/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
41
|
-
pyerualjetwork-4.3.8.
|
42
|
-
pyerualjetwork-4.3.8.
|
43
|
-
pyerualjetwork-4.3.8.
|
44
|
-
pyerualjetwork-4.3.8.
|
41
|
+
pyerualjetwork-4.3.8.dev7.dist-info/METADATA,sha256=6gkuwOb1LWVNKmr-a-cXnkP6vOpouafpgZm6fzYpyyI,8384
|
42
|
+
pyerualjetwork-4.3.8.dev7.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
43
|
+
pyerualjetwork-4.3.8.dev7.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
|
44
|
+
pyerualjetwork-4.3.8.dev7.dist-info/RECORD,,
|
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.3.
|
1
|
+
__version__ = "4.3.8dev7-afterburner"
|
2
2
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
3
3
|
|
4
4
|
def print_version(__version__):
|
@@ -298,31 +298,31 @@ def evolver(weights,
|
|
298
298
|
mutated_W = cp.copy(bad_weights)
|
299
299
|
mutated_act = bad_activations.copy()
|
300
300
|
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
301
|
+
if __name__ == '__main__':
|
302
|
+
with mp.Pool() as pool:
|
303
|
+
process_func = partial(process_single, policy=policy, best_weight=best_weight,
|
304
|
+
best_activations=best_activations, good_weights=good_weights,
|
305
|
+
good_activations=good_activations, bad_weights=bad_weights,
|
306
|
+
bad_activations=bad_activations, best_fitness=best_fitness,
|
307
|
+
normalized_fitness=normalized_fitness, child_W=child_W,
|
308
|
+
child_act=child_act, mutated_W=mutated_W, mutated_act=mutated_act,
|
309
|
+
cross_over_mode=cross_over_mode,
|
310
|
+
activation_selection_add_prob=activation_selection_add_prob,
|
311
|
+
activation_selection_change_prob=activation_selection_change_prob,
|
312
|
+
activation_selection_threshold=activation_selection_threshold,
|
313
|
+
bad_genomes_selection_prob=bad_genomes_selection_prob,
|
314
|
+
fitness_bias=fitness_bias,
|
315
|
+
epsilon=epsilon,
|
316
|
+
bad_genomes_mutation_prob=bad_genomes_mutation_prob,
|
317
|
+
activation_mutate_prob=activation_mutate_prob,
|
318
|
+
activation_mutate_add_prob=activation_mutate_add_prob,
|
319
|
+
activation_mutate_delete_prob=activation_mutate_delete_prob,
|
320
|
+
activation_mutate_change_prob=activation_mutate_change_prob,
|
321
|
+
weight_mutate_prob=weight_mutate_prob,
|
322
|
+
weight_mutate_threshold=weight_mutate_threshold,
|
323
|
+
activation_mutate_threshold=activation_mutate_threshold)
|
324
|
+
|
325
|
+
pool.map(process_func, range(len(bad_weights)))
|
326
326
|
|
327
327
|
child_W[0] = best_weight
|
328
328
|
child_act[0] = best_activations
|
@@ -369,7 +369,7 @@ def evolver(weights,
|
|
369
369
|
|
370
370
|
def process_single(i, policy, best_weight, best_activations, good_weights, good_activations,
|
371
371
|
bad_weights, bad_activations, best_fitness, normalized_fitness, child_W, child_act,
|
372
|
-
mutated_W, mutated_act,
|
372
|
+
mutated_W, mutated_act, cross_over_mode,
|
373
373
|
activation_selection_add_prob, activation_selection_change_prob,
|
374
374
|
activation_selection_threshold, bad_genomes_selection_prob, fitness_bias,
|
375
375
|
epsilon, bad_genomes_mutation_prob, activation_mutate_prob,
|
@@ -401,6 +401,29 @@ def process_single(i, policy, best_weight, best_activations, good_weights, good_
|
|
401
401
|
epsilon=epsilon
|
402
402
|
)
|
403
403
|
|
404
|
+
mutation_prob = random.uniform(0, 1)
|
405
|
+
if mutation_prob > bad_genomes_mutation_prob:
|
406
|
+
genome_W = good_weights[i]
|
407
|
+
genome_act = good_activations[i]
|
408
|
+
fitness_index = int(len(bad_weights) / 2 + i)
|
409
|
+
else:
|
410
|
+
genome_W = bad_weights[i]
|
411
|
+
genome_act = bad_activations[i]
|
412
|
+
fitness_index = i
|
413
|
+
|
414
|
+
mutated_W[i], mutated_act[i] = mutation(genome_W,
|
415
|
+
genome_act,
|
416
|
+
activation_mutate_prob=activation_mutate_prob,
|
417
|
+
activation_add_prob=activation_mutate_add_prob,
|
418
|
+
activation_delete_prob=activation_mutate_delete_prob,
|
419
|
+
activation_change_prob=activation_mutate_change_prob,
|
420
|
+
weight_mutate_prob=weight_mutate_prob,
|
421
|
+
weight_mutate_threshold=weight_mutate_threshold,
|
422
|
+
genome_fitness=normalized_fitness[fitness_index],
|
423
|
+
activation_mutate_threshold=activation_mutate_threshold,
|
424
|
+
epsilon=epsilon
|
425
|
+
)
|
426
|
+
|
404
427
|
def evaluate(x_population, weights, activation_potentiations):
|
405
428
|
"""
|
406
429
|
Evaluates the performance of a population of genomes, applying different activation functions
|
File without changes
|
File without changes
|