pyerualjetwork 4.3.8.dev14__py3-none-any.whl → 4.3.9b0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/activation_functions.py +2 -2
- pyerualjetwork/activation_functions_cuda.py +63 -114
- pyerualjetwork/data_operations_cuda.py +1 -1
- pyerualjetwork/model_operations.py +14 -14
- pyerualjetwork/model_operations_cuda.py +16 -17
- pyerualjetwork/plan.py +87 -268
- pyerualjetwork/plan_cuda.py +82 -276
- pyerualjetwork/planeat.py +12 -44
- pyerualjetwork/planeat_cuda.py +9 -45
- pyerualjetwork/visualizations.py +29 -26
- pyerualjetwork/visualizations_cuda.py +19 -20
- {pyerualjetwork-4.3.8.dev14.dist-info → pyerualjetwork-4.3.9b0.dist-info}/METADATA +2 -19
- pyerualjetwork-4.3.9b0.dist-info/RECORD +24 -0
- pyerualjetwork-4.3.9b0.dist-info/top_level.txt +1 -0
- pyerualjetwork-4.3.8.dev14.dist-info/RECORD +0 -44
- pyerualjetwork-4.3.8.dev14.dist-info/top_level.txt +0 -2
- pyerualjetwork_afterburner/__init__.py +0 -11
- pyerualjetwork_afterburner/activation_functions.py +0 -290
- pyerualjetwork_afterburner/activation_functions_cuda.py +0 -289
- pyerualjetwork_afterburner/data_operations.py +0 -406
- pyerualjetwork_afterburner/data_operations_cuda.py +0 -461
- pyerualjetwork_afterburner/help.py +0 -17
- pyerualjetwork_afterburner/loss_functions.py +0 -21
- pyerualjetwork_afterburner/loss_functions_cuda.py +0 -21
- pyerualjetwork_afterburner/memory_operations.py +0 -298
- pyerualjetwork_afterburner/metrics.py +0 -190
- pyerualjetwork_afterburner/metrics_cuda.py +0 -163
- pyerualjetwork_afterburner/model_operations.py +0 -408
- pyerualjetwork_afterburner/model_operations_cuda.py +0 -420
- pyerualjetwork_afterburner/plan.py +0 -432
- pyerualjetwork_afterburner/plan_cuda.py +0 -441
- pyerualjetwork_afterburner/planeat.py +0 -793
- pyerualjetwork_afterburner/planeat_cuda.py +0 -840
- pyerualjetwork_afterburner/ui.py +0 -22
- pyerualjetwork_afterburner/visualizations.py +0 -823
- pyerualjetwork_afterburner/visualizations_cuda.py +0 -825
- {pyerualjetwork-4.3.8.dev14.dist-info → pyerualjetwork-4.3.9b0.dist-info}/WHEEL +0 -0
pyerualjetwork/planeat_cuda.py
CHANGED
@@ -19,7 +19,6 @@ import math
|
|
19
19
|
|
20
20
|
|
21
21
|
### LIBRARY IMPORTS ###
|
22
|
-
from .plan_cuda import feed_forward
|
23
22
|
from .data_operations_cuda import normalization
|
24
23
|
from .ui import loading_bars, initialize_loading_bar
|
25
24
|
from .activation_functions_cuda import apply_activation, all_activations
|
@@ -399,7 +398,7 @@ def evolver(weights,
|
|
399
398
|
return weights, activation_potentiations
|
400
399
|
|
401
400
|
|
402
|
-
def evaluate(x_population, weights, activation_potentiations
|
401
|
+
def evaluate(x_population, weights, activation_potentiations):
|
403
402
|
"""
|
404
403
|
Evaluates the performance of a population of genomes, applying different activation functions
|
405
404
|
and weights depending on whether reinforcement learning mode is enabled or not.
|
@@ -414,64 +413,29 @@ def evaluate(x_population, weights, activation_potentiations, rl_mode=False, dty
|
|
414
413
|
activation_potentiations (list or str): A list where each entry represents an activation function
|
415
414
|
or a potentiation strategy applied to each genome. If only one
|
416
415
|
activation function is used, this can be a single string.
|
417
|
-
|
418
|
-
rl_mode (bool, optional): If True, reinforcement learning mode is activated, this accepts x_population is a single genome. (Also weights and activation_potentations a single genomes part.)
|
419
|
-
Default is False.
|
420
|
-
|
421
|
-
|
422
|
-
dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
|
423
|
-
|
424
416
|
Returns:
|
425
417
|
list: A list of outputs corresponding to each genome in the population after applying the respective
|
426
418
|
activation function and weights.
|
427
419
|
|
428
|
-
Notes:
|
429
|
-
- If `rl_mode` is True:
|
430
|
-
- Accepts x_population is a single genom
|
431
|
-
- The inputs are flattened, and the activation function is applied across the single genom.
|
432
|
-
|
433
|
-
- If `rl_mode` is False:
|
434
|
-
- Accepts x_population is a list of genomes
|
435
|
-
- Each genome is processed individually, and the results are stored in the `outputs` list.
|
436
|
-
|
437
|
-
- `feed_forward()` function is the core function that processes the input with the given weights and activation function.
|
438
|
-
|
439
420
|
Example:
|
440
421
|
```python
|
441
|
-
outputs = evaluate(x_population, weights, activation_potentiations
|
422
|
+
outputs = evaluate(x_population, weights, activation_potentiations)
|
442
423
|
```
|
443
424
|
|
444
425
|
- The function returns a list of outputs after processing the population, where each element corresponds to
|
445
426
|
the output for each genome in `x_population`.
|
446
427
|
"""
|
447
|
-
|
448
|
-
### IF RL_MODE IS TRUE, A SINGLE GENOME IS ASSUMED AS INPUT, A FEEDFORWARD PREDICTION IS MADE, AND THE OUTPUT(NPARRAY) IS RETURNED:
|
449
|
-
|
450
|
-
### IF RL_MODE IS FALSE, PREDICTIONS ARE MADE FOR ALL GENOMES IN THE GROUP USING THEIR CORRESPONDING INDEXED INPUTS AND DATA.
|
451
428
|
### THE OUTPUTS ARE RETURNED AS A PYTHON LIST, WHERE EACH GENOME'S OUTPUT MATCHES ITS INDEX:
|
452
429
|
|
453
|
-
if
|
454
|
-
|
455
|
-
Input = Input.ravel()
|
456
|
-
|
457
|
-
if isinstance(activation_potentiations, str):
|
458
|
-
activation_potentiations = [activation_potentiations]
|
459
|
-
|
460
|
-
outputs = feed_forward(Input=Input, is_training=False, activation_potentiation=activation_potentiations, w=weights)
|
461
|
-
|
430
|
+
if isinstance(activation_potentiations, str):
|
431
|
+
activation_potentiations = [activation_potentiations]
|
462
432
|
else:
|
463
|
-
|
464
|
-
for i, genome in enumerate(x_population):
|
433
|
+
activation_potentiations = [item if isinstance(item, list) else [item] for item in activation_potentiations]
|
465
434
|
|
466
|
-
|
467
|
-
|
435
|
+
x_population = apply_activation(x_population, activation_potentiations)
|
436
|
+
result = x_population @ weights.T
|
468
437
|
|
469
|
-
|
470
|
-
activation_potentiations[i] = [activation_potentiations[i]]
|
471
|
-
|
472
|
-
outputs[i] = feed_forward(Input=Input, is_training=False, activation_potentiation=activation_potentiations[i], w=weights[i])
|
473
|
-
|
474
|
-
return outputs
|
438
|
+
return result
|
475
439
|
|
476
440
|
|
477
441
|
def cross_over(first_parent_W,
|
@@ -757,7 +721,7 @@ def mutation(weight,
|
|
757
721
|
max_threshold = len(activations)
|
758
722
|
|
759
723
|
new_threshold = threshold
|
760
|
-
|
724
|
+
|
761
725
|
except_this = ['spiral', 'circular']
|
762
726
|
all_acts = [item for item in all_activations() if item not in except_this] # SPIRAL AND CIRCULAR ACTIVATION DISCARDED
|
763
727
|
|
pyerualjetwork/visualizations.py
CHANGED
@@ -323,7 +323,8 @@ def draw_activations(x_train, activation):
|
|
323
323
|
except:
|
324
324
|
print('\rWARNING: error in drawing some activation.', end='')
|
325
325
|
return x_train
|
326
|
-
|
326
|
+
|
327
|
+
|
327
328
|
def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation):
|
328
329
|
|
329
330
|
from .metrics import metrics, confusion_matrix, roc_curve
|
@@ -447,8 +448,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
|
|
447
448
|
axs[1,1].set_title('Decision Boundary')
|
448
449
|
|
449
450
|
except Exception as e:
|
450
|
-
|
451
|
-
print(f"Hata oluştu: {e}")
|
451
|
+
print(f"Error: {e}")
|
452
452
|
|
453
453
|
plt.show()
|
454
454
|
|
@@ -614,10 +614,10 @@ def update_neuron_history(LTPW, ax1, row, col, class_count, artist5, fig1, acc=F
|
|
614
614
|
|
615
615
|
fig1.suptitle(suptitle_info, fontsize=16)
|
616
616
|
|
617
|
-
|
617
|
+
""" DISABLED
|
618
618
|
def initialize_visualization_for_fit(val, show_training, neurons_history, x_train, y_train):
|
619
|
-
|
620
|
-
from data_operations import find_closest_factors
|
619
|
+
|
620
|
+
from .data_operations import find_closest_factors
|
621
621
|
visualization_objects = {}
|
622
622
|
|
623
623
|
if show_training or neurons_history:
|
@@ -649,32 +649,33 @@ def initialize_visualization_for_fit(val, show_training, neurons_history, x_trai
|
|
649
649
|
})
|
650
650
|
|
651
651
|
return visualization_objects
|
652
|
-
|
652
|
+
"""
|
653
653
|
|
654
|
-
|
654
|
+
""" DISABLED
|
655
655
|
def update_neural_web_for_fit(W, ax, G, artist):
|
656
|
-
|
657
|
-
The function `update_neural_web_for_fit` updates a neural web visualization for fitting.
|
658
|
-
"""
|
656
|
+
|
659
657
|
art5_1, art5_2, art5_3 = draw_neural_web(W=W, ax=ax, G=G, return_objs=True)
|
660
658
|
art5_list = [art5_1] + [art5_2] + list(art5_3.values())
|
661
659
|
artist.append(art5_list)
|
662
|
-
|
663
|
-
|
660
|
+
"""
|
661
|
+
|
662
|
+
""" DISABLED
|
664
663
|
def update_weight_visualization_for_fit(ax, LTPW, artist2):
|
665
|
-
|
664
|
+
|
666
665
|
art2 = ax.imshow(LTPW, interpolation='sinc', cmap='viridis')
|
667
666
|
artist2.append([art2])
|
667
|
+
"""
|
668
668
|
|
669
|
-
|
669
|
+
""" DISABLED
|
670
670
|
def update_decision_boundary_for_fit(ax, x_val, y_val, activation_potentiation, LTPW, artist1):
|
671
|
-
|
671
|
+
|
672
672
|
art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activation_potentiation, LTPW, artist=artist1, ax=ax)
|
673
673
|
artist1.append([*art1_1.collections, art1_2])
|
674
|
+
"""
|
674
675
|
|
675
|
-
|
676
|
+
""" DISABLED
|
676
677
|
def update_validation_history_for_fit(ax, val_list, artist3):
|
677
|
-
|
678
|
+
|
678
679
|
period = list(range(1, len(val_list) + 1))
|
679
680
|
art3 = ax.plot(
|
680
681
|
period,
|
@@ -691,20 +692,22 @@ def update_validation_history_for_fit(ax, val_list, artist3):
|
|
691
692
|
ax.set_ylabel('Validation Accuracy')
|
692
693
|
ax.set_ylim([0, 1])
|
693
694
|
artist3.append(art3)
|
694
|
-
|
695
|
-
|
695
|
+
"""
|
696
|
+
|
697
|
+
""" DISABLED
|
696
698
|
def display_visualization_for_fit(fig, artist_list, interval):
|
697
|
-
|
699
|
+
|
698
700
|
ani = ArtistAnimation(fig, artist_list, interval=interval, blit=True)
|
699
701
|
return ani
|
700
|
-
|
702
|
+
"""
|
703
|
+
|
701
704
|
def show():
|
702
705
|
plt.tight_layout()
|
703
706
|
plt.show()
|
704
707
|
|
705
708
|
def initialize_visualization_for_learner(show_history, neurons_history, neural_web_history, x_train, y_train):
|
706
|
-
|
707
|
-
from data_operations import find_closest_factors
|
709
|
+
|
710
|
+
from .data_operations import find_closest_factors
|
708
711
|
viz_objects = {}
|
709
712
|
|
710
713
|
if show_history:
|
@@ -745,7 +748,7 @@ def initialize_visualization_for_learner(show_history, neurons_history, neural_w
|
|
745
748
|
return viz_objects
|
746
749
|
|
747
750
|
def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_acc_per_depth_list, x_train, final_activations):
|
748
|
-
|
751
|
+
|
749
752
|
if 'history' not in viz_objects:
|
750
753
|
return
|
751
754
|
|
@@ -772,7 +775,7 @@ def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_ac
|
|
772
775
|
hist['artist3'].append(art3)
|
773
776
|
|
774
777
|
def display_visualizations_for_learner(viz_objects, best_weights, data, best_acc, test_loss, y_train, interval):
|
775
|
-
|
778
|
+
|
776
779
|
if 'history' in viz_objects:
|
777
780
|
hist = viz_objects['history']
|
778
781
|
for _ in range(30):
|
@@ -448,7 +448,7 @@ def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation)
|
|
448
448
|
|
449
449
|
plt.show()
|
450
450
|
|
451
|
-
|
451
|
+
|
452
452
|
def plot_decision_boundary(x, y, activation_potentiation, W, artist=None, ax=None):
|
453
453
|
|
454
454
|
from .model_operations_cuda import predict_model_ram
|
@@ -583,9 +583,8 @@ def update_neuron_history(LTPW, ax1, row, col, class_count, artist5, fig1, acc=F
|
|
583
583
|
|
584
584
|
fig1.suptitle(suptitle_info, fontsize=16)
|
585
585
|
|
586
|
-
|
586
|
+
""" DISABLED
|
587
587
|
def initialize_visualization_for_fit(val, show_training, neurons_history, x_train, y_train):
|
588
|
-
"""Initializes the visualization setup based on the parameters."""
|
589
588
|
from .data_operations_cuda import find_closest_factors
|
590
589
|
visualization_objects = {}
|
591
590
|
|
@@ -618,33 +617,34 @@ def initialize_visualization_for_fit(val, show_training, neurons_history, x_trai
|
|
618
617
|
})
|
619
618
|
|
620
619
|
return visualization_objects
|
620
|
+
"""
|
621
|
+
|
621
622
|
|
622
|
-
|
623
|
+
""" DISABLED
|
623
624
|
def update_weight_visualization_for_fit(ax, LTPW, artist2):
|
624
|
-
"""Updates the weight visualization plot."""
|
625
625
|
art2 = ax.imshow(LTPW.get(), interpolation='sinc', cmap='viridis')
|
626
626
|
artist2.append([art2])
|
627
|
+
"""
|
627
628
|
|
628
629
|
def show():
|
629
630
|
plt.tight_layout()
|
630
631
|
plt.show()
|
631
632
|
|
633
|
+
""" DISABLED
|
632
634
|
def update_neural_web_for_fit(W, ax, G, artist):
|
633
|
-
"""
|
634
|
-
The function `update_neural_web_for_fit` updates a neural web visualization for fitting.
|
635
|
-
"""
|
636
635
|
art5_1, art5_2, art5_3 = draw_neural_web(W=W, ax=ax, G=G, return_objs=True)
|
637
636
|
art5_list = [art5_1] + [art5_2] + list(art5_3.values())
|
638
637
|
artist.append(art5_list)
|
639
|
-
|
638
|
+
"""
|
639
|
+
|
640
|
+
""" DISABLED
|
640
641
|
def update_decision_boundary_for_fit(ax, x_val, y_val, activation_potentiation, LTPW, artist1):
|
641
|
-
"""Updates the decision boundary visualization."""
|
642
642
|
art1_1, art1_2 = plot_decision_boundary(x_val, y_val, activation_potentiation, LTPW, artist=artist1, ax=ax)
|
643
643
|
artist1.append([*art1_1.collections, art1_2])
|
644
|
+
"""
|
644
645
|
|
645
|
-
|
646
|
+
""" DISABLED
|
646
647
|
def update_validation_history_for_fit(ax, val_list, artist3):
|
647
|
-
"""Updates the validation accuracy history plot."""
|
648
648
|
val_list_cpu = []
|
649
649
|
for i in range(len(val_list)):
|
650
650
|
val_list_cpu.append(val_list[i].get())
|
@@ -664,13 +664,12 @@ def update_validation_history_for_fit(ax, val_list, artist3):
|
|
664
664
|
ax.set_ylabel('Validation Accuracy')
|
665
665
|
ax.set_ylim([0, 1])
|
666
666
|
artist3.append(art3)
|
667
|
-
|
668
|
-
|
667
|
+
"""
|
668
|
+
""" DISABLED
|
669
669
|
def display_visualization_for_fit(fig, artist_list, interval):
|
670
|
-
"""Displays the animation for the given artist list."""
|
671
670
|
ani = ArtistAnimation(fig, artist_list, interval=interval, blit=True)
|
672
671
|
return ani
|
673
|
-
|
672
|
+
"""
|
674
673
|
def update_neuron_history_for_learner(LTPW, ax1, row, col, class_count, artist5, data, fig1, acc=False, loss=False):
|
675
674
|
|
676
675
|
for j in range(len(class_count)):
|
@@ -699,7 +698,7 @@ def update_neuron_history_for_learner(LTPW, ax1, row, col, class_count, artist5,
|
|
699
698
|
return artist5
|
700
699
|
|
701
700
|
def initialize_visualization_for_learner(show_history, neurons_history, neural_web_history, x_train, y_train):
|
702
|
-
|
701
|
+
|
703
702
|
from .data_operations_cuda import find_closest_factors
|
704
703
|
viz_objects = {}
|
705
704
|
|
@@ -741,7 +740,7 @@ def initialize_visualization_for_learner(show_history, neurons_history, neural_w
|
|
741
740
|
return viz_objects
|
742
741
|
|
743
742
|
def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_acc_per_depth_list, x_train, final_activations):
|
744
|
-
|
743
|
+
|
745
744
|
if 'history' not in viz_objects:
|
746
745
|
return
|
747
746
|
|
@@ -770,11 +769,11 @@ def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_ac
|
|
770
769
|
translated_x_train += draw_activations(x, activation)
|
771
770
|
|
772
771
|
art3 = hist['ax'][2].plot(x.get(), translated_x_train.get(), color='b', markersize=6, linewidth=2)
|
773
|
-
hist['ax'][2].set_title('
|
772
|
+
hist['ax'][2].set_title('Activation Shape Over Gen')
|
774
773
|
hist['artist3'].append(art3)
|
775
774
|
|
776
775
|
def display_visualizations_for_learner(viz_objects, best_weights, data, best_acc, test_loss, y_train, interval):
|
777
|
-
|
776
|
+
|
778
777
|
if 'history' in viz_objects:
|
779
778
|
hist = viz_objects['history']
|
780
779
|
for _ in range(30):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.3.
|
3
|
+
Version: 4.3.9b0
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -25,8 +25,6 @@ GitHub Page: https://github.com/HCB06/PyerualJetwork
|
|
25
25
|
YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7HbsBpCx2VTJ4SK9wcPyse-EHw
|
26
26
|
|
27
27
|
pip install pyerualjetwork
|
28
|
-
|
29
|
-
'use this if your data small or memory management is a problem :'
|
30
28
|
|
31
29
|
from pyerualjetwork import plan
|
32
30
|
from pyerualjetwork import planeat
|
@@ -38,26 +36,11 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
|
|
38
36
|
from pyerualjetwork import data_operations_cuda
|
39
37
|
from pyerualjetwork import model_operations_cuda
|
40
38
|
|
41
|
-
'use this if your data large or memory management is not a problem : _afterburner package (afterburner package comes with powerful paralellism,
|
42
|
-
afterburner with cuda modules offers super-fast training but some memory managemant features and visualization features discarded.
|
43
|
-
Specially designed for LLM training and other massive model training)'
|
44
|
-
|
45
|
-
from pyerualjetwork_afterburner import plan
|
46
|
-
from pyerualjetwork_afterburner import planeat
|
47
|
-
from pyerualjetwork_afterburner import data_operations
|
48
|
-
from pyerualjetwork_afterburner import model_operations
|
49
|
-
|
50
|
-
from pyerualjetwork_afterburner import plan_cuda
|
51
|
-
from pyerualjetwork_afterburner import planeat_cuda
|
52
|
-
from pyerualjetwork_afterburner import data_operations_cuda
|
53
|
-
from pyerualjetwork_afterburner import model_operations_cuda
|
54
|
-
|
55
39
|
Optimized for Visual Studio Code
|
56
40
|
|
57
41
|
requires=[
|
58
42
|
'scipy==1.13.1',
|
59
43
|
'tqdm==4.66.4',
|
60
|
-
'seaborn==0.13.2',
|
61
44
|
'pandas==2.2.2',
|
62
45
|
'networkx==3.3',
|
63
46
|
'numpy==1.26.4',
|
@@ -67,7 +50,7 @@ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7Hbs
|
|
67
50
|
'psutil==6.1.1'
|
68
51
|
]
|
69
52
|
|
70
|
-
matplotlib,
|
53
|
+
matplotlib, networkx (optional).
|
71
54
|
|
72
55
|
##############################
|
73
56
|
|
@@ -0,0 +1,24 @@
|
|
1
|
+
pyerualjetwork/__init__.py,sha256=mDFCFvWAMM7y9Es2Aopu_-rSQcBNfw0hhrdFX9xyCiw,641
|
2
|
+
pyerualjetwork/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
|
3
|
+
pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
4
|
+
pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
5
|
+
pyerualjetwork/data_operations_cuda.py,sha256=ZcjmLXE1-HVwedextYdJZ1rgrns1OfSekzFpr1a9m6o,17625
|
6
|
+
pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
7
|
+
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
8
|
+
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
9
|
+
pyerualjetwork/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
|
10
|
+
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
11
|
+
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
12
|
+
pyerualjetwork/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
|
13
|
+
pyerualjetwork/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
|
14
|
+
pyerualjetwork/plan.py,sha256=rd6BOj6xU7m-nQgLQ0tH5oY5a78tTwW5spsX4niFUKU,23362
|
15
|
+
pyerualjetwork/plan_cuda.py,sha256=NJq_KSbl7Q7wlie2NH7ApwJ36hfmzocXra36tgcO28w,24197
|
16
|
+
pyerualjetwork/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
|
17
|
+
pyerualjetwork/planeat_cuda.py,sha256=SG7Oq1F2m3lJBbG9cgmu7q_ApmwSn2SvTpcbtEVAoDE,37630
|
18
|
+
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
|
+
pyerualjetwork/visualizations.py,sha256=08O5uEewuYiovZRX1uHWEHjn19LcnhndWYvqVN74xs0,28290
|
20
|
+
pyerualjetwork/visualizations_cuda.py,sha256=PYRqj4QYUbuYMYcNwO8yaTPB-jK7E6kZHhTrAi0lwPU,28749
|
21
|
+
pyerualjetwork-4.3.9b0.dist-info/METADATA,sha256=pCQACKItpMxqwMfYJl3EHXsa7kA_ZwkWuz8e-FtDKcE,7476
|
22
|
+
pyerualjetwork-4.3.9b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
23
|
+
pyerualjetwork-4.3.9b0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
24
|
+
pyerualjetwork-4.3.9b0.dist-info/RECORD,,
|
@@ -0,0 +1 @@
|
|
1
|
+
pyerualjetwork
|
@@ -1,44 +0,0 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=6mnqWyOWo8H0zTHCtLabuZcPos7IkHQL-zorGSDjmJg,644
|
2
|
-
pyerualjetwork/activation_functions.py,sha256=AR91fQV2W2rc-Qb4Yp7b8ucYpGjwyQUewO-M-lyEMs8,7729
|
3
|
-
pyerualjetwork/activation_functions_cuda.py,sha256=ztIw6rMR4t1289_TPIGYwE6qarl_YbSOGj5Ep3rUMqs,11803
|
4
|
-
pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
5
|
-
pyerualjetwork/data_operations_cuda.py,sha256=UpoJoFhIwTU4xg9dVuLAxLAT4CkRaGsxvtJG9j1xrNo,17629
|
6
|
-
pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
7
|
-
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
8
|
-
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
9
|
-
pyerualjetwork/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
|
10
|
-
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
11
|
-
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
12
|
-
pyerualjetwork/model_operations.py,sha256=RKqnh7-MByFosxqme4q4jC1lOndX26O-OVXYV6ZxoEE,12965
|
13
|
-
pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
|
14
|
-
pyerualjetwork/plan.py,sha256=ApMQC46_I8qtMqO4lLYLme--SGcMRg-GRo1-gSb3A3I,31894
|
15
|
-
pyerualjetwork/plan_cuda.py,sha256=ifXiyZs8y3N8b6BbM-T8fMrvzAal-zHqcxFlqwnfwII,33256
|
16
|
-
pyerualjetwork/planeat.py,sha256=uRX-hDywGOai6hHhbYrmcRodNZOg4WCQeJWZbdMlZs8,39470
|
17
|
-
pyerualjetwork/planeat_cuda.py,sha256=QNHCQLkR0MNFqyN2iHAtC7cbf8qZiD3p_54YH3lnMFA,39529
|
18
|
-
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
|
-
pyerualjetwork/visualizations.py,sha256=VL00sX2DZz83F__PyEJH9s1LizuXpOBzWjnoSjMJIJ0,28770
|
20
|
-
pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
21
|
-
pyerualjetwork_afterburner/__init__.py,sha256=69f2q5I15pzjMGZWrYXCvBISFPYNl7pAFu0HcUPIgx8,656
|
22
|
-
pyerualjetwork_afterburner/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
|
23
|
-
pyerualjetwork_afterburner/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
24
|
-
pyerualjetwork_afterburner/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
25
|
-
pyerualjetwork_afterburner/data_operations_cuda.py,sha256=ZcjmLXE1-HVwedextYdJZ1rgrns1OfSekzFpr1a9m6o,17625
|
26
|
-
pyerualjetwork_afterburner/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
27
|
-
pyerualjetwork_afterburner/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
28
|
-
pyerualjetwork_afterburner/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
29
|
-
pyerualjetwork_afterburner/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
|
30
|
-
pyerualjetwork_afterburner/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
31
|
-
pyerualjetwork_afterburner/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
32
|
-
pyerualjetwork_afterburner/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
|
33
|
-
pyerualjetwork_afterburner/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
|
34
|
-
pyerualjetwork_afterburner/plan.py,sha256=EOXngujG7DQRf3cooFigKB7heQsEoK96JtrcKivT_pE,22449
|
35
|
-
pyerualjetwork_afterburner/plan_cuda.py,sha256=fg5YunEuBE7sK6q9paP_yAGONr9x0e19oF0J0DucejM,23380
|
36
|
-
pyerualjetwork_afterburner/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
|
37
|
-
pyerualjetwork_afterburner/planeat_cuda.py,sha256=aCfJjyJyFhlIYLM-Aj2ufhbR226czHaxwe_RtxcDz3M,39326
|
38
|
-
pyerualjetwork_afterburner/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
39
|
-
pyerualjetwork_afterburner/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
|
40
|
-
pyerualjetwork_afterburner/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
41
|
-
pyerualjetwork-4.3.8.dev14.dist-info/METADATA,sha256=lcLjDoaGh0uebFIky-qWE8sq--rLNgEuMuzAmMC_QZw,8385
|
42
|
-
pyerualjetwork-4.3.8.dev14.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
43
|
-
pyerualjetwork-4.3.8.dev14.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
|
44
|
-
pyerualjetwork-4.3.8.dev14.dist-info/RECORD,,
|
@@ -1,11 +0,0 @@
|
|
1
|
-
__version__ = "4.3.8dev14-afterburner"
|
2
|
-
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
3
|
-
|
4
|
-
def print_version(__version__):
|
5
|
-
print(f"PyerualJetwork Version {__version__}" + '\n')
|
6
|
-
|
7
|
-
def print_update_notes(__update__):
|
8
|
-
print(f"Notes:\n{__update__}")
|
9
|
-
|
10
|
-
print_version(__version__)
|
11
|
-
print_update_notes(__update__)
|