pyerualjetwork 4.3.8.dev11__py3-none-any.whl → 4.3.8.dev13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.8dev11"
1
+ __version__ = "4.3.8dev13"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.8.dev11
3
+ Version: 4.3.8.dev13
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=enBaOW3ZNXz1ik5le05fYiVNO6Csl8KebCHHaoNuj08,644
1
+ pyerualjetwork/__init__.py,sha256=vomtUsdPwM5NzWQpVko_GThIuZ-DAKlprxbB9xJUucw,644
2
2
  pyerualjetwork/activation_functions.py,sha256=AR91fQV2W2rc-Qb4Yp7b8ucYpGjwyQUewO-M-lyEMs8,7729
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=ztIw6rMR4t1289_TPIGYwE6qarl_YbSOGj5Ep3rUMqs,11803
4
4
  pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
@@ -18,7 +18,7 @@ pyerualjetwork/planeat_cuda.py,sha256=QNHCQLkR0MNFqyN2iHAtC7cbf8qZiD3p_54YH3lnMF
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=VL00sX2DZz83F__PyEJH9s1LizuXpOBzWjnoSjMJIJ0,28770
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
21
- pyerualjetwork_afterburner/__init__.py,sha256=4itTiyfF3WQNZtynWJiwj2t-7IaWA6ZC1vN0j5ClWrs,656
21
+ pyerualjetwork_afterburner/__init__.py,sha256=jzZPo4VwvPw86FzbJexTbRSVSuwVIPUMl99bcgaNZc4,656
22
22
  pyerualjetwork_afterburner/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
23
23
  pyerualjetwork_afterburner/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
24
24
  pyerualjetwork_afterburner/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
@@ -34,11 +34,11 @@ pyerualjetwork_afterburner/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI
34
34
  pyerualjetwork_afterburner/plan.py,sha256=EOXngujG7DQRf3cooFigKB7heQsEoK96JtrcKivT_pE,22449
35
35
  pyerualjetwork_afterburner/plan_cuda.py,sha256=fg5YunEuBE7sK6q9paP_yAGONr9x0e19oF0J0DucejM,23380
36
36
  pyerualjetwork_afterburner/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
37
- pyerualjetwork_afterburner/planeat_cuda.py,sha256=kTwf7jprzUH02O23iK9Np6Ay8-CC8c_2aWrcQfwUFWQ,39502
37
+ pyerualjetwork_afterburner/planeat_cuda.py,sha256=glhQsHhV0Cyrbxdd5nBP93v1KQrvU0rDYzBTy8tTYC4,39325
38
38
  pyerualjetwork_afterburner/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
39
39
  pyerualjetwork_afterburner/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
40
40
  pyerualjetwork_afterburner/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
41
- pyerualjetwork-4.3.8.dev11.dist-info/METADATA,sha256=em2f1_hyJv88ggVCjUbce3eMOTIjzin9fgAwz-ncN_Q,8385
42
- pyerualjetwork-4.3.8.dev11.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
43
- pyerualjetwork-4.3.8.dev11.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
44
- pyerualjetwork-4.3.8.dev11.dist-info/RECORD,,
41
+ pyerualjetwork-4.3.8.dev13.dist-info/METADATA,sha256=L6DmUVYtZhx10ygYXTXiUCdxSB__f65QWl7fE9dzGF8,8385
42
+ pyerualjetwork-4.3.8.dev13.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
43
+ pyerualjetwork-4.3.8.dev13.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
44
+ pyerualjetwork-4.3.8.dev13.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.8dev11-afterburner"
1
+ __version__ = "4.3.8dev13-afterburner"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
@@ -295,77 +295,78 @@ def evolver(weights,
295
295
  mutated_W = cp.copy(bad_weights)
296
296
  mutated_act = bad_activations.copy()
297
297
 
298
- if __name__ == '__main__':
299
- process_func = partial(process_single, policy=policy, best_weight=best_weight,
300
- best_activations=best_activations, good_weights=good_weights,
301
- good_activations=good_activations, bad_weights=bad_weights,
302
- bad_activations=bad_activations, best_fitness=best_fitness,
303
- normalized_fitness=normalized_fitness, child_W=child_W,
304
- child_act=child_act, mutated_W=mutated_W, mutated_act=mutated_act,
305
- cross_over_mode=cross_over_mode,
306
- activation_selection_add_prob=activation_selection_add_prob,
307
- activation_selection_change_prob=activation_selection_change_prob,
308
- activation_selection_threshold=activation_selection_threshold,
309
- bad_genomes_selection_prob=bad_genomes_selection_prob,
310
- fitness_bias=fitness_bias,
311
- epsilon=epsilon,
312
- bad_genomes_mutation_prob=bad_genomes_mutation_prob,
313
- activation_mutate_prob=activation_mutate_prob,
314
- activation_mutate_add_prob=activation_mutate_add_prob,
315
- activation_mutate_delete_prob=activation_mutate_delete_prob,
316
- activation_mutate_change_prob=activation_mutate_change_prob,
317
- weight_mutate_prob=weight_mutate_prob,
318
- weight_mutate_threshold=weight_mutate_threshold,
319
- activation_mutate_threshold=activation_mutate_threshold)
320
-
321
- with mp.Pool() as pool:
322
- results = pool.map(process_func, range(len(bad_weights)))
323
-
324
- for i, new_child_W, new_child_act, new_mutated_W, new_mutated_act in results:
325
- child_W[i] = new_child_W
326
- child_act[i] = new_child_act
327
- mutated_W[i] = new_mutated_W
328
- mutated_act[i] = new_mutated_act
329
-
330
- child_W[0] = best_weight
331
- child_act[0] = best_activations
332
-
333
- weights = cp.vstack((child_W, mutated_W))
334
- activation_potentiations = child_act + mutated_act
335
-
336
- ### INFO PRINTING CONSOLE
337
-
338
- if show_info == True:
339
- print("\nGENERATION:", str(what_gen) + ' FINISHED \n')
340
- print("*** Configuration Settings ***")
341
- print(" POPULATION SIZE: ", str(len(weights)))
342
- print(" STRATEGY: ", strategy)
343
- print(" CROSS OVER MODE: ", cross_over_mode)
344
- print(" POLICY: ", policy)
345
- print(" BAD GENOMES MUTATION PROB: ", str(bad_genomes_mutation_prob))
346
- print(" GOOD GENOMES MUTATION PROB: ", str(round(1 - bad_genomes_mutation_prob, 2)))
347
- print(" BAD GENOMES SELECTION PROB: ", str(bad_genomes_selection_prob))
348
- print(" WEIGHT MUTATE PROB: ", str(weight_mutate_prob))
349
- print(" WEIGHT MUTATE THRESHOLD: ", str(weight_mutate_threshold))
350
- print(" ACTIVATION MUTATE PROB: ", str(activation_mutate_prob))
351
- print(" ACTIVATION MUTATE THRESHOLD: ", str(activation_mutate_threshold))
352
- print(" ACTIVATION MUTATE ADD PROB: ", str(activation_mutate_add_prob))
353
- print(" ACTIVATION MUTATE DELETE PROB: ", str(activation_mutate_delete_prob))
354
- print(" ACTIVATION MUTATE CHANGE PROB: ", str(activation_mutate_change_prob))
355
- print(" ACTIVATION SELECTION THRESHOLD:", str(activation_selection_threshold))
356
- print(" ACTIVATION SELECTION ADD PROB: ", str(activation_selection_add_prob))
357
- print(" ACTIVATION SELECTION CHANGE PROB: ", str(activation_selection_change_prob))
358
- print(" FITNESS BIAS: ", str(fitness_bias) + '\n')
359
-
360
- print("*** Performance ***")
361
- print(" MAX FITNESS: ", str(cp.round(max(fitness), 2)))
362
- print(" MEAN FITNESS: ", str(cp.round(cp.mean(fitness), 2)))
363
- print(" MIN FITNESS: ", str(cp.round(min(fitness), 2)) + '\n')
364
-
365
- print(" BEST GENOME ACTIVATION LENGTH: ", str(len(best_activations)))
366
- print(" BEST GENOME INDEX: ", str(0))
367
- print(" NOTE: The returned genome at the first index is the best of the previous generation." + '\n')
368
-
298
+ process_func = partial(process_single, policy=policy, best_weight=best_weight,
299
+ best_activations=best_activations, good_weights=good_weights,
300
+ good_activations=good_activations, bad_weights=bad_weights,
301
+ bad_activations=bad_activations, best_fitness=best_fitness,
302
+ normalized_fitness=normalized_fitness, child_W=child_W,
303
+ child_act=child_act, mutated_W=mutated_W, mutated_act=mutated_act,
304
+ cross_over_mode=cross_over_mode,
305
+ activation_selection_add_prob=activation_selection_add_prob,
306
+ activation_selection_change_prob=activation_selection_change_prob,
307
+ activation_selection_threshold=activation_selection_threshold,
308
+ bad_genomes_selection_prob=bad_genomes_selection_prob,
309
+ fitness_bias=fitness_bias,
310
+ epsilon=epsilon,
311
+ bad_genomes_mutation_prob=bad_genomes_mutation_prob,
312
+ activation_mutate_prob=activation_mutate_prob,
313
+ activation_mutate_add_prob=activation_mutate_add_prob,
314
+ activation_mutate_delete_prob=activation_mutate_delete_prob,
315
+ activation_mutate_change_prob=activation_mutate_change_prob,
316
+ weight_mutate_prob=weight_mutate_prob,
317
+ weight_mutate_threshold=weight_mutate_threshold,
318
+ activation_mutate_threshold=activation_mutate_threshold)
319
+
320
+ with mp.Pool() as pool:
321
+ results = pool.map(process_func, range(len(bad_weights)))
322
+
323
+ for i, new_child_W, new_child_act, new_mutated_W, new_mutated_act in results:
324
+ child_W[i] = new_child_W
325
+ child_act[i] = new_child_act
326
+ mutated_W[i] = new_mutated_W
327
+ mutated_act[i] = new_mutated_act
328
+
329
+ mp.set_start_method("spawn", force=True)
330
+
331
+ child_W[0] = best_weight
332
+ child_act[0] = best_activations
333
+
334
+ weights = cp.vstack((child_W, mutated_W))
335
+ activation_potentiations = child_act + mutated_act
336
+
337
+ ### INFO PRINTING CONSOLE
338
+
339
+ if show_info == True:
340
+ print("\nGENERATION:", str(what_gen) + ' FINISHED \n')
341
+ print("*** Configuration Settings ***")
342
+ print(" POPULATION SIZE: ", str(len(weights)))
343
+ print(" STRATEGY: ", strategy)
344
+ print(" CROSS OVER MODE: ", cross_over_mode)
345
+ print(" POLICY: ", policy)
346
+ print(" BAD GENOMES MUTATION PROB: ", str(bad_genomes_mutation_prob))
347
+ print(" GOOD GENOMES MUTATION PROB: ", str(round(1 - bad_genomes_mutation_prob, 2)))
348
+ print(" BAD GENOMES SELECTION PROB: ", str(bad_genomes_selection_prob))
349
+ print(" WEIGHT MUTATE PROB: ", str(weight_mutate_prob))
350
+ print(" WEIGHT MUTATE THRESHOLD: ", str(weight_mutate_threshold))
351
+ print(" ACTIVATION MUTATE PROB: ", str(activation_mutate_prob))
352
+ print(" ACTIVATION MUTATE THRESHOLD: ", str(activation_mutate_threshold))
353
+ print(" ACTIVATION MUTATE ADD PROB: ", str(activation_mutate_add_prob))
354
+ print(" ACTIVATION MUTATE DELETE PROB: ", str(activation_mutate_delete_prob))
355
+ print(" ACTIVATION MUTATE CHANGE PROB: ", str(activation_mutate_change_prob))
356
+ print(" ACTIVATION SELECTION THRESHOLD:", str(activation_selection_threshold))
357
+ print(" ACTIVATION SELECTION ADD PROB: ", str(activation_selection_add_prob))
358
+ print(" ACTIVATION SELECTION CHANGE PROB: ", str(activation_selection_change_prob))
359
+ print(" FITNESS BIAS: ", str(fitness_bias) + '\n')
360
+
361
+ print("*** Performance ***")
362
+ print(" MAX FITNESS: ", str(cp.round(max(fitness), 2)))
363
+ print(" MEAN FITNESS: ", str(cp.round(cp.mean(fitness), 2)))
364
+ print(" MIN FITNESS: ", str(cp.round(min(fitness), 2)) + '\n')
365
+
366
+ print(" BEST GENOME ACTIVATION LENGTH: ", str(len(best_activations)))
367
+ print(" BEST GENOME INDEX: ", str(0))
368
+ print(" NOTE: The returned genome at the first index is the best of the previous generation." + '\n')
369
+
369
370
 
370
371
  return weights, activation_potentiations
371
372