pyerualjetwork 4.3.8.dev10__py3-none-any.whl → 4.3.8.dev12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.8dev10"
1
+ __version__ = "4.3.8dev12"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.8.dev10
3
+ Version: 4.3.8.dev12
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=wIkjXAYazsVwpUIrmUV8JIppM_7Bl9IHlngJjO1mEx8,644
1
+ pyerualjetwork/__init__.py,sha256=mYHgj6_HSs1hKuwJhvsdityKzWx1stIRLwsak7O-JNA,644
2
2
  pyerualjetwork/activation_functions.py,sha256=AR91fQV2W2rc-Qb4Yp7b8ucYpGjwyQUewO-M-lyEMs8,7729
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=ztIw6rMR4t1289_TPIGYwE6qarl_YbSOGj5Ep3rUMqs,11803
4
4
  pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
@@ -18,7 +18,7 @@ pyerualjetwork/planeat_cuda.py,sha256=QNHCQLkR0MNFqyN2iHAtC7cbf8qZiD3p_54YH3lnMF
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=VL00sX2DZz83F__PyEJH9s1LizuXpOBzWjnoSjMJIJ0,28770
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
21
- pyerualjetwork_afterburner/__init__.py,sha256=YqmaG5JVVPFrvNZw0Nz3_i6Z-oJ5LUoqAUreHApWQVA,656
21
+ pyerualjetwork_afterburner/__init__.py,sha256=XQXi0SD3pbpG0OYlaQqCfi2_x69zIzX4a9smtT5oMS0,656
22
22
  pyerualjetwork_afterburner/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
23
23
  pyerualjetwork_afterburner/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
24
24
  pyerualjetwork_afterburner/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
@@ -32,13 +32,13 @@ pyerualjetwork_afterburner/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2
32
32
  pyerualjetwork_afterburner/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
33
33
  pyerualjetwork_afterburner/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
34
34
  pyerualjetwork_afterburner/plan.py,sha256=EOXngujG7DQRf3cooFigKB7heQsEoK96JtrcKivT_pE,22449
35
- pyerualjetwork_afterburner/plan_cuda.py,sha256=fg5YunEuBE7sK6q9paP_yAGONr9x0e19oF0J0DucejM,23380
35
+ pyerualjetwork_afterburner/plan_cuda.py,sha256=ujswqGVrJK5q6IpU3gGpzoz1bzE4rFadSE6grLZ6KaI,23420
36
36
  pyerualjetwork_afterburner/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
37
- pyerualjetwork_afterburner/planeat_cuda.py,sha256=uDzaku2S80gDyNb2dbnagr4o0j32k2BZ9d5Pjfz4I_w,39422
37
+ pyerualjetwork_afterburner/planeat_cuda.py,sha256=Xt8ZdZqIMNcizFrRqjvoORmcHxI97f18EHqWOpivdwc,39276
38
38
  pyerualjetwork_afterburner/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
39
39
  pyerualjetwork_afterburner/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
40
40
  pyerualjetwork_afterburner/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
41
- pyerualjetwork-4.3.8.dev10.dist-info/METADATA,sha256=3jAMjd88JArKdI2Qtdpw-RIrDpG-gkC5TlciDuqwWns,8385
42
- pyerualjetwork-4.3.8.dev10.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
43
- pyerualjetwork-4.3.8.dev10.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
44
- pyerualjetwork-4.3.8.dev10.dist-info/RECORD,,
41
+ pyerualjetwork-4.3.8.dev12.dist-info/METADATA,sha256=RWTkv7XSYmemQDOY60v1GsOom9lF7WTftbupvkL2U3o,8385
42
+ pyerualjetwork-4.3.8.dev12.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
43
+ pyerualjetwork-4.3.8.dev12.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
44
+ pyerualjetwork-4.3.8.dev12.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.8dev10-afterburner"
1
+ __version__ = "4.3.8dev12-afterburner"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
@@ -368,7 +368,8 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
368
368
  best_acc_per_gen_list.append(best_acc)
369
369
  loss_list.append(best_loss)
370
370
 
371
- weight_pop, act_pop = optimizer(cp.array(weight_pop, copy=False, dtype=dtype), act_pop, i, cp.array(target_pop, dtype=dtype, copy=False), bar_status=False)
371
+ if __name__ == '__main__':
372
+ weight_pop, act_pop = optimizer(cp.array(weight_pop, copy=False, dtype=dtype), act_pop, i, cp.array(target_pop, dtype=dtype, copy=False), bar_status=False)
372
373
  target_pop = []
373
374
 
374
375
  # Early stopping check
@@ -284,8 +284,6 @@ def evolver(weights,
284
284
 
285
285
  ### PLANEAT IS APPLIED ACCORDING TO THE SPECIFIED POLICY, STRATEGY, AND PROBABILITY CONFIGURATION:
286
286
 
287
- bar_format = loading_bars()[0]
288
-
289
287
  normalized_fitness = normalization(fitness, dtype=dtype)
290
288
 
291
289
  best_fitness = normalized_fitness[-1]
@@ -297,32 +295,31 @@ def evolver(weights,
297
295
  mutated_W = cp.copy(bad_weights)
298
296
  mutated_act = bad_activations.copy()
299
297
 
300
- if __name__ == '__main__':
301
- process_func = partial(process_single, policy=policy, best_weight=best_weight,
302
- best_activations=best_activations, good_weights=good_weights,
303
- good_activations=good_activations, bad_weights=bad_weights,
304
- bad_activations=bad_activations, best_fitness=best_fitness,
305
- normalized_fitness=normalized_fitness, child_W=child_W,
306
- child_act=child_act, mutated_W=mutated_W, mutated_act=mutated_act,
307
- cross_over_mode=cross_over_mode,
308
- activation_selection_add_prob=activation_selection_add_prob,
309
- activation_selection_change_prob=activation_selection_change_prob,
310
- activation_selection_threshold=activation_selection_threshold,
311
- bad_genomes_selection_prob=bad_genomes_selection_prob,
312
- fitness_bias=fitness_bias,
313
- epsilon=epsilon,
314
- bad_genomes_mutation_prob=bad_genomes_mutation_prob,
315
- activation_mutate_prob=activation_mutate_prob,
316
- activation_mutate_add_prob=activation_mutate_add_prob,
317
- activation_mutate_delete_prob=activation_mutate_delete_prob,
318
- activation_mutate_change_prob=activation_mutate_change_prob,
319
- weight_mutate_prob=weight_mutate_prob,
320
- weight_mutate_threshold=weight_mutate_threshold,
321
- activation_mutate_threshold=activation_mutate_threshold)
322
-
323
- with mp.Pool() as pool:
324
- results = pool.map(process_func, range(len(bad_weights)))
325
-
298
+ process_func = partial(process_single, policy=policy, best_weight=best_weight,
299
+ best_activations=best_activations, good_weights=good_weights,
300
+ good_activations=good_activations, bad_weights=bad_weights,
301
+ bad_activations=bad_activations, best_fitness=best_fitness,
302
+ normalized_fitness=normalized_fitness, child_W=child_W,
303
+ child_act=child_act, mutated_W=mutated_W, mutated_act=mutated_act,
304
+ cross_over_mode=cross_over_mode,
305
+ activation_selection_add_prob=activation_selection_add_prob,
306
+ activation_selection_change_prob=activation_selection_change_prob,
307
+ activation_selection_threshold=activation_selection_threshold,
308
+ bad_genomes_selection_prob=bad_genomes_selection_prob,
309
+ fitness_bias=fitness_bias,
310
+ epsilon=epsilon,
311
+ bad_genomes_mutation_prob=bad_genomes_mutation_prob,
312
+ activation_mutate_prob=activation_mutate_prob,
313
+ activation_mutate_add_prob=activation_mutate_add_prob,
314
+ activation_mutate_delete_prob=activation_mutate_delete_prob,
315
+ activation_mutate_change_prob=activation_mutate_change_prob,
316
+ weight_mutate_prob=weight_mutate_prob,
317
+ weight_mutate_threshold=weight_mutate_threshold,
318
+ activation_mutate_threshold=activation_mutate_threshold)
319
+
320
+ with mp.Pool() as pool:
321
+ results = pool.map(process_func, range(len(bad_weights)))
322
+
326
323
  for i, new_child_W, new_child_act, new_mutated_W, new_mutated_act in results:
327
324
  child_W[i] = new_child_W
328
325
  child_act[i] = new_child_act