pyerualjetwork 4.3.8.dev10__py3-none-any.whl → 4.3.8.dev12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- {pyerualjetwork-4.3.8.dev10.dist-info → pyerualjetwork-4.3.8.dev12.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.3.8.dev10.dist-info → pyerualjetwork-4.3.8.dev12.dist-info}/RECORD +8 -8
- pyerualjetwork_afterburner/__init__.py +1 -1
- pyerualjetwork_afterburner/plan_cuda.py +2 -1
- pyerualjetwork_afterburner/planeat_cuda.py +25 -28
- {pyerualjetwork-4.3.8.dev10.dist-info → pyerualjetwork-4.3.8.dev12.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.3.8.dev10.dist-info → pyerualjetwork-4.3.8.dev12.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.3.
|
1
|
+
__version__ = "4.3.8dev12"
|
2
2
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
3
3
|
|
4
4
|
def print_version(__version__):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.3.8.
|
3
|
+
Version: 4.3.8.dev12
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=mYHgj6_HSs1hKuwJhvsdityKzWx1stIRLwsak7O-JNA,644
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=AR91fQV2W2rc-Qb4Yp7b8ucYpGjwyQUewO-M-lyEMs8,7729
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=ztIw6rMR4t1289_TPIGYwE6qarl_YbSOGj5Ep3rUMqs,11803
|
4
4
|
pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
@@ -18,7 +18,7 @@ pyerualjetwork/planeat_cuda.py,sha256=QNHCQLkR0MNFqyN2iHAtC7cbf8qZiD3p_54YH3lnMF
|
|
18
18
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
19
|
pyerualjetwork/visualizations.py,sha256=VL00sX2DZz83F__PyEJH9s1LizuXpOBzWjnoSjMJIJ0,28770
|
20
20
|
pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
21
|
-
pyerualjetwork_afterburner/__init__.py,sha256=
|
21
|
+
pyerualjetwork_afterburner/__init__.py,sha256=XQXi0SD3pbpG0OYlaQqCfi2_x69zIzX4a9smtT5oMS0,656
|
22
22
|
pyerualjetwork_afterburner/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
|
23
23
|
pyerualjetwork_afterburner/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
24
24
|
pyerualjetwork_afterburner/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
@@ -32,13 +32,13 @@ pyerualjetwork_afterburner/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2
|
|
32
32
|
pyerualjetwork_afterburner/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
|
33
33
|
pyerualjetwork_afterburner/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
|
34
34
|
pyerualjetwork_afterburner/plan.py,sha256=EOXngujG7DQRf3cooFigKB7heQsEoK96JtrcKivT_pE,22449
|
35
|
-
pyerualjetwork_afterburner/plan_cuda.py,sha256=
|
35
|
+
pyerualjetwork_afterburner/plan_cuda.py,sha256=ujswqGVrJK5q6IpU3gGpzoz1bzE4rFadSE6grLZ6KaI,23420
|
36
36
|
pyerualjetwork_afterburner/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
|
37
|
-
pyerualjetwork_afterburner/planeat_cuda.py,sha256=
|
37
|
+
pyerualjetwork_afterburner/planeat_cuda.py,sha256=Xt8ZdZqIMNcizFrRqjvoORmcHxI97f18EHqWOpivdwc,39276
|
38
38
|
pyerualjetwork_afterburner/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
39
39
|
pyerualjetwork_afterburner/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
|
40
40
|
pyerualjetwork_afterburner/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
41
|
-
pyerualjetwork-4.3.8.
|
42
|
-
pyerualjetwork-4.3.8.
|
43
|
-
pyerualjetwork-4.3.8.
|
44
|
-
pyerualjetwork-4.3.8.
|
41
|
+
pyerualjetwork-4.3.8.dev12.dist-info/METADATA,sha256=RWTkv7XSYmemQDOY60v1GsOom9lF7WTftbupvkL2U3o,8385
|
42
|
+
pyerualjetwork-4.3.8.dev12.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
43
|
+
pyerualjetwork-4.3.8.dev12.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
|
44
|
+
pyerualjetwork-4.3.8.dev12.dist-info/RECORD,,
|
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.3.
|
1
|
+
__version__ = "4.3.8dev12-afterburner"
|
2
2
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
3
3
|
|
4
4
|
def print_version(__version__):
|
@@ -368,7 +368,8 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
|
|
368
368
|
best_acc_per_gen_list.append(best_acc)
|
369
369
|
loss_list.append(best_loss)
|
370
370
|
|
371
|
-
|
371
|
+
if __name__ == '__main__':
|
372
|
+
weight_pop, act_pop = optimizer(cp.array(weight_pop, copy=False, dtype=dtype), act_pop, i, cp.array(target_pop, dtype=dtype, copy=False), bar_status=False)
|
372
373
|
target_pop = []
|
373
374
|
|
374
375
|
# Early stopping check
|
@@ -284,8 +284,6 @@ def evolver(weights,
|
|
284
284
|
|
285
285
|
### PLANEAT IS APPLIED ACCORDING TO THE SPECIFIED POLICY, STRATEGY, AND PROBABILITY CONFIGURATION:
|
286
286
|
|
287
|
-
bar_format = loading_bars()[0]
|
288
|
-
|
289
287
|
normalized_fitness = normalization(fitness, dtype=dtype)
|
290
288
|
|
291
289
|
best_fitness = normalized_fitness[-1]
|
@@ -297,32 +295,31 @@ def evolver(weights,
|
|
297
295
|
mutated_W = cp.copy(bad_weights)
|
298
296
|
mutated_act = bad_activations.copy()
|
299
297
|
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
298
|
+
process_func = partial(process_single, policy=policy, best_weight=best_weight,
|
299
|
+
best_activations=best_activations, good_weights=good_weights,
|
300
|
+
good_activations=good_activations, bad_weights=bad_weights,
|
301
|
+
bad_activations=bad_activations, best_fitness=best_fitness,
|
302
|
+
normalized_fitness=normalized_fitness, child_W=child_W,
|
303
|
+
child_act=child_act, mutated_W=mutated_W, mutated_act=mutated_act,
|
304
|
+
cross_over_mode=cross_over_mode,
|
305
|
+
activation_selection_add_prob=activation_selection_add_prob,
|
306
|
+
activation_selection_change_prob=activation_selection_change_prob,
|
307
|
+
activation_selection_threshold=activation_selection_threshold,
|
308
|
+
bad_genomes_selection_prob=bad_genomes_selection_prob,
|
309
|
+
fitness_bias=fitness_bias,
|
310
|
+
epsilon=epsilon,
|
311
|
+
bad_genomes_mutation_prob=bad_genomes_mutation_prob,
|
312
|
+
activation_mutate_prob=activation_mutate_prob,
|
313
|
+
activation_mutate_add_prob=activation_mutate_add_prob,
|
314
|
+
activation_mutate_delete_prob=activation_mutate_delete_prob,
|
315
|
+
activation_mutate_change_prob=activation_mutate_change_prob,
|
316
|
+
weight_mutate_prob=weight_mutate_prob,
|
317
|
+
weight_mutate_threshold=weight_mutate_threshold,
|
318
|
+
activation_mutate_threshold=activation_mutate_threshold)
|
319
|
+
|
320
|
+
with mp.Pool() as pool:
|
321
|
+
results = pool.map(process_func, range(len(bad_weights)))
|
322
|
+
|
326
323
|
for i, new_child_W, new_child_act, new_mutated_W, new_mutated_act in results:
|
327
324
|
child_W[i] = new_child_W
|
328
325
|
child_act[i] = new_child_act
|
File without changes
|
File without changes
|