pyerualjetwork 4.3.5__py3-none-any.whl → 4.3.7b0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.5"
1
+ __version__ = "4.3.7b0"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.5
3
+ Version: 4.3.7b0
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -22,34 +22,35 @@ PyPi Page: https://pypi.org/project/pyerualjetwork/
22
22
 
23
23
  GitHub Page: https://github.com/HCB06/PyerualJetwork
24
24
 
25
-
26
- pip install pyerualjetwork
27
-
28
- 'use this if your data small or memory management is a problem :'
29
-
30
- from pyerualjetwork import plan
31
- from pyerualjetwork import planeat
32
- from pyerualjetwork import data_operations
33
- from pyerualjetwork import model_operations
34
-
35
- from pyerualjetwork import plan_cuda
36
- from pyerualjetwork import planeat_cuda
37
- from pyerualjetwork import data_operations_cuda
38
- from pyerualjetwork import model_operations_cuda
39
-
40
- 'use this if your data large or memory management is not a problem : _afterburner package (afterburner package comes with powerful paralellism,
41
- afterburner with cuda modules offers super-fast training but some memory managemant features and visualization features discarded.
42
- Specially designed for LLM training and other massive model training)'
43
-
44
- from pyerualjetwork_afterburner import plan
45
- from pyerualjetwork_afterburner import planeat
46
- from pyerualjetwork_afterburner import data_operations
47
- from pyerualjetwork_afterburner import model_operations
48
-
49
- from pyerualjetwork_afterburner import plan_cuda
50
- from pyerualjetwork_afterburner import planeat_cuda
51
- from pyerualjetwork_afterburner import data_operations_cuda
52
- from pyerualjetwork_afterburner import model_operations_cuda
25
+ YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7HbsBpCx2VTJ4SK9wcPyse-EHw
26
+
27
+ pip install pyerualjetwork
28
+
29
+ 'use this if your data small or memory management is a problem :'
30
+
31
+ from pyerualjetwork import plan
32
+ from pyerualjetwork import planeat
33
+ from pyerualjetwork import data_operations
34
+ from pyerualjetwork import model_operations
35
+
36
+ from pyerualjetwork import plan_cuda
37
+ from pyerualjetwork import planeat_cuda
38
+ from pyerualjetwork import data_operations_cuda
39
+ from pyerualjetwork import model_operations_cuda
40
+
41
+ 'use this if your data large or memory management is not a problem : _afterburner package (afterburner package comes with powerful paralellism,
42
+ afterburner with cuda modules offers super-fast training but some memory managemant features and visualization features discarded.
43
+ Specially designed for LLM training and other massive model training)'
44
+
45
+ from pyerualjetwork_afterburner import plan
46
+ from pyerualjetwork_afterburner import planeat
47
+ from pyerualjetwork_afterburner import data_operations
48
+ from pyerualjetwork_afterburner import model_operations
49
+
50
+ from pyerualjetwork_afterburner import plan_cuda
51
+ from pyerualjetwork_afterburner import planeat_cuda
52
+ from pyerualjetwork_afterburner import data_operations_cuda
53
+ from pyerualjetwork_afterburner import model_operations_cuda
53
54
 
54
55
  Optimized for Visual Studio Code
55
56
 
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=sKJX-RBI11HnSA60rsHOc6wTNYZvfACzy-fmz3b5g1E,639
1
+ pyerualjetwork/__init__.py,sha256=0yYSSk_z8C_WfsNPwaxAo7RQWNQn83mjegCZTPt1sl8,641
2
2
  pyerualjetwork/activation_functions.py,sha256=AR91fQV2W2rc-Qb4Yp7b8ucYpGjwyQUewO-M-lyEMs8,7729
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=ztIw6rMR4t1289_TPIGYwE6qarl_YbSOGj5Ep3rUMqs,11803
4
4
  pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
@@ -18,7 +18,7 @@ pyerualjetwork/planeat_cuda.py,sha256=QNHCQLkR0MNFqyN2iHAtC7cbf8qZiD3p_54YH3lnMF
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=VL00sX2DZz83F__PyEJH9s1LizuXpOBzWjnoSjMJIJ0,28770
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
21
- pyerualjetwork_afterburner/__init__.py,sha256=JGAmlalrkQx2Vn--wZXgs-3Y5cYYSxyBVxRD-r5O2x4,651
21
+ pyerualjetwork_afterburner/__init__.py,sha256=psYQ-_dKN2YjrVYaDqYmBSWk8dby_uZq-qGFmqaxd54,653
22
22
  pyerualjetwork_afterburner/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
23
23
  pyerualjetwork_afterburner/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
24
24
  pyerualjetwork_afterburner/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
@@ -32,13 +32,13 @@ pyerualjetwork_afterburner/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2
32
32
  pyerualjetwork_afterburner/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
33
33
  pyerualjetwork_afterburner/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
34
34
  pyerualjetwork_afterburner/plan.py,sha256=Gxv8ii4brTYMzzFZBP-X6kkwc6w6vtTPiMmqVOAqoq8,21972
35
- pyerualjetwork_afterburner/plan_cuda.py,sha256=oZ4JMyXg6rU2AvD-aOacQ3zXf0-rWrSODZDKnDs8y9Q,22755
35
+ pyerualjetwork_afterburner/plan_cuda.py,sha256=OdoeVM8OOluy_1xPf-MoJj_0nC4WPdietZAcUax8kqo,22895
36
36
  pyerualjetwork_afterburner/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
37
37
  pyerualjetwork_afterburner/planeat_cuda.py,sha256=KnU54osvwrMVvdO4fww7BqFBoq0I8c2YcZOVHD8l69g,37494
38
38
  pyerualjetwork_afterburner/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
39
39
  pyerualjetwork_afterburner/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
40
40
  pyerualjetwork_afterburner/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
41
- pyerualjetwork-4.3.5.dist-info/METADATA,sha256=eqYwEb5qcka3BM1WHWdfKk_1NCEJU26aLfXFYGWc0Pw,8248
42
- pyerualjetwork-4.3.5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
43
- pyerualjetwork-4.3.5.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
44
- pyerualjetwork-4.3.5.dist-info/RECORD,,
41
+ pyerualjetwork-4.3.7b0.dist-info/METADATA,sha256=d6ZmQm4wX9kb3Cfsywg-KCqBaBJs12zStgXYwyLNaZA,8381
42
+ pyerualjetwork-4.3.7b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
43
+ pyerualjetwork-4.3.7b0.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
44
+ pyerualjetwork-4.3.7b0.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.5-afterburner"
1
+ __version__ = "4.3.7b0-afterburner"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
@@ -226,10 +226,10 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
226
226
 
227
227
  if fit_start is True and i == 0:
228
228
  act_pop.append(activation_potentiation[j])
229
- W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[-1], dtype=dtype)
229
+ W = fit(cp.array(x_train_batch, dtype=dtype, copy=False), cp.array(y_train_batch, dtype=dtype, copy=False), activation_potentiation=act_pop[-1], dtype=dtype)
230
230
  weight_pop.append(W)
231
231
 
232
- model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], activation_potentiation=act_pop[j])
232
+ model = evaluate(cp.array(x_train_batch, dtype=dtype, copy=False), cp.array(y_train_batch, dtype=dtype, copy=False), W=weight_pop[j], activation_potentiation=act_pop[j])
233
233
  acc = model[get_acc()]
234
234
 
235
235
  if strategy == 'accuracy': target_pop.append(acc)