pyerualjetwork 4.3.5__py3-none-any.whl → 4.3.7b0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- {pyerualjetwork-4.3.5.dist-info → pyerualjetwork-4.3.7b0.dist-info}/METADATA +30 -29
- {pyerualjetwork-4.3.5.dist-info → pyerualjetwork-4.3.7b0.dist-info}/RECORD +7 -7
- pyerualjetwork_afterburner/__init__.py +1 -1
- pyerualjetwork_afterburner/plan_cuda.py +2 -2
- {pyerualjetwork-4.3.5.dist-info → pyerualjetwork-4.3.7b0.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.3.5.dist-info → pyerualjetwork-4.3.7b0.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.3.
|
1
|
+
__version__ = "4.3.7b0"
|
2
2
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
3
3
|
|
4
4
|
def print_version(__version__):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.3.
|
3
|
+
Version: 4.3.7b0
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -22,34 +22,35 @@ PyPi Page: https://pypi.org/project/pyerualjetwork/
|
|
22
22
|
|
23
23
|
GitHub Page: https://github.com/HCB06/PyerualJetwork
|
24
24
|
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
from pyerualjetwork import
|
32
|
-
from pyerualjetwork import
|
33
|
-
from pyerualjetwork import
|
34
|
-
|
35
|
-
|
36
|
-
from pyerualjetwork import
|
37
|
-
from pyerualjetwork import
|
38
|
-
from pyerualjetwork import
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
from pyerualjetwork_afterburner import
|
46
|
-
from pyerualjetwork_afterburner import
|
47
|
-
from pyerualjetwork_afterburner import
|
48
|
-
|
49
|
-
|
50
|
-
from pyerualjetwork_afterburner import
|
51
|
-
from pyerualjetwork_afterburner import
|
52
|
-
from pyerualjetwork_afterburner import
|
25
|
+
YouTube Tutorials: https://www.youtube.com/watch?v=6wMQstZ00is&list=PLNgNWpM7HbsBpCx2VTJ4SK9wcPyse-EHw
|
26
|
+
|
27
|
+
pip install pyerualjetwork
|
28
|
+
|
29
|
+
'use this if your data small or memory management is a problem :'
|
30
|
+
|
31
|
+
from pyerualjetwork import plan
|
32
|
+
from pyerualjetwork import planeat
|
33
|
+
from pyerualjetwork import data_operations
|
34
|
+
from pyerualjetwork import model_operations
|
35
|
+
|
36
|
+
from pyerualjetwork import plan_cuda
|
37
|
+
from pyerualjetwork import planeat_cuda
|
38
|
+
from pyerualjetwork import data_operations_cuda
|
39
|
+
from pyerualjetwork import model_operations_cuda
|
40
|
+
|
41
|
+
'use this if your data large or memory management is not a problem : _afterburner package (afterburner package comes with powerful paralellism,
|
42
|
+
afterburner with cuda modules offers super-fast training but some memory managemant features and visualization features discarded.
|
43
|
+
Specially designed for LLM training and other massive model training)'
|
44
|
+
|
45
|
+
from pyerualjetwork_afterburner import plan
|
46
|
+
from pyerualjetwork_afterburner import planeat
|
47
|
+
from pyerualjetwork_afterburner import data_operations
|
48
|
+
from pyerualjetwork_afterburner import model_operations
|
49
|
+
|
50
|
+
from pyerualjetwork_afterburner import plan_cuda
|
51
|
+
from pyerualjetwork_afterburner import planeat_cuda
|
52
|
+
from pyerualjetwork_afterburner import data_operations_cuda
|
53
|
+
from pyerualjetwork_afterburner import model_operations_cuda
|
53
54
|
|
54
55
|
Optimized for Visual Studio Code
|
55
56
|
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=0yYSSk_z8C_WfsNPwaxAo7RQWNQn83mjegCZTPt1sl8,641
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=AR91fQV2W2rc-Qb4Yp7b8ucYpGjwyQUewO-M-lyEMs8,7729
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=ztIw6rMR4t1289_TPIGYwE6qarl_YbSOGj5Ep3rUMqs,11803
|
4
4
|
pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
@@ -18,7 +18,7 @@ pyerualjetwork/planeat_cuda.py,sha256=QNHCQLkR0MNFqyN2iHAtC7cbf8qZiD3p_54YH3lnMF
|
|
18
18
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
19
|
pyerualjetwork/visualizations.py,sha256=VL00sX2DZz83F__PyEJH9s1LizuXpOBzWjnoSjMJIJ0,28770
|
20
20
|
pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
21
|
-
pyerualjetwork_afterburner/__init__.py,sha256=
|
21
|
+
pyerualjetwork_afterburner/__init__.py,sha256=psYQ-_dKN2YjrVYaDqYmBSWk8dby_uZq-qGFmqaxd54,653
|
22
22
|
pyerualjetwork_afterburner/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
|
23
23
|
pyerualjetwork_afterburner/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
24
24
|
pyerualjetwork_afterburner/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
@@ -32,13 +32,13 @@ pyerualjetwork_afterburner/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2
|
|
32
32
|
pyerualjetwork_afterburner/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
|
33
33
|
pyerualjetwork_afterburner/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
|
34
34
|
pyerualjetwork_afterburner/plan.py,sha256=Gxv8ii4brTYMzzFZBP-X6kkwc6w6vtTPiMmqVOAqoq8,21972
|
35
|
-
pyerualjetwork_afterburner/plan_cuda.py,sha256=
|
35
|
+
pyerualjetwork_afterburner/plan_cuda.py,sha256=OdoeVM8OOluy_1xPf-MoJj_0nC4WPdietZAcUax8kqo,22895
|
36
36
|
pyerualjetwork_afterburner/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
|
37
37
|
pyerualjetwork_afterburner/planeat_cuda.py,sha256=KnU54osvwrMVvdO4fww7BqFBoq0I8c2YcZOVHD8l69g,37494
|
38
38
|
pyerualjetwork_afterburner/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
39
39
|
pyerualjetwork_afterburner/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
|
40
40
|
pyerualjetwork_afterburner/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
41
|
-
pyerualjetwork-4.3.
|
42
|
-
pyerualjetwork-4.3.
|
43
|
-
pyerualjetwork-4.3.
|
44
|
-
pyerualjetwork-4.3.
|
41
|
+
pyerualjetwork-4.3.7b0.dist-info/METADATA,sha256=d6ZmQm4wX9kb3Cfsywg-KCqBaBJs12zStgXYwyLNaZA,8381
|
42
|
+
pyerualjetwork-4.3.7b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
43
|
+
pyerualjetwork-4.3.7b0.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
|
44
|
+
pyerualjetwork-4.3.7b0.dist-info/RECORD,,
|
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.3.
|
1
|
+
__version__ = "4.3.7b0-afterburner"
|
2
2
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
3
3
|
|
4
4
|
def print_version(__version__):
|
@@ -226,10 +226,10 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
|
|
226
226
|
|
227
227
|
if fit_start is True and i == 0:
|
228
228
|
act_pop.append(activation_potentiation[j])
|
229
|
-
W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[-1], dtype=dtype)
|
229
|
+
W = fit(cp.array(x_train_batch, dtype=dtype, copy=False), cp.array(y_train_batch, dtype=dtype, copy=False), activation_potentiation=act_pop[-1], dtype=dtype)
|
230
230
|
weight_pop.append(W)
|
231
231
|
|
232
|
-
model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], activation_potentiation=act_pop[j])
|
232
|
+
model = evaluate(cp.array(x_train_batch, dtype=dtype, copy=False), cp.array(y_train_batch, dtype=dtype, copy=False), W=weight_pop[j], activation_potentiation=act_pop[j])
|
233
233
|
acc = model[get_acc()]
|
234
234
|
|
235
235
|
if strategy == 'accuracy': target_pop.append(acc)
|
File without changes
|
File without changes
|