pyerualjetwork 4.3.4__py3-none-any.whl → 4.3.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/plan.py +1 -1
- pyerualjetwork/plan_cuda.py +3 -3
- {pyerualjetwork-4.3.4.dist-info → pyerualjetwork-4.3.5.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.3.4.dist-info → pyerualjetwork-4.3.5.dist-info}/RECORD +10 -10
- pyerualjetwork_afterburner/__init__.py +1 -1
- pyerualjetwork_afterburner/data_operations_cuda.py +1 -1
- pyerualjetwork_afterburner/plan_cuda.py +4 -4
- {pyerualjetwork-4.3.4.dist-info → pyerualjetwork-4.3.5.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.3.4.dist-info → pyerualjetwork-4.3.5.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.3.
|
1
|
+
__version__ = "4.3.5"
|
2
2
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
3
3
|
|
4
4
|
def print_version(__version__):
|
pyerualjetwork/plan.py
CHANGED
pyerualjetwork/plan_cuda.py
CHANGED
@@ -264,7 +264,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
|
|
264
264
|
|
265
265
|
"""
|
266
266
|
|
267
|
-
from planeat_cuda import define_genomes
|
267
|
+
from .planeat_cuda import define_genomes
|
268
268
|
|
269
269
|
data = 'Train'
|
270
270
|
|
@@ -277,13 +277,13 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
|
|
277
277
|
x_train = transfer_to_gpu(x_train, dtype=dtype)
|
278
278
|
y_train = transfer_to_gpu(y_train, dtype=y_train.dtype)
|
279
279
|
|
280
|
-
from data_operations_cuda import batcher
|
280
|
+
from .data_operations_cuda import batcher
|
281
281
|
|
282
282
|
elif memory == 'cpu':
|
283
283
|
x_train = transfer_to_cpu(x_train, dtype=dtype)
|
284
284
|
y_train = transfer_to_cpu(y_train, dtype=y_train.dtype)
|
285
285
|
|
286
|
-
from data_operations import batcher
|
286
|
+
from .data_operations import batcher
|
287
287
|
|
288
288
|
else:
|
289
289
|
raise ValueError("memory parameter must be 'cpu' or 'gpu'.")
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.3.
|
3
|
+
Version: 4.3.5
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=sKJX-RBI11HnSA60rsHOc6wTNYZvfACzy-fmz3b5g1E,639
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=AR91fQV2W2rc-Qb4Yp7b8ucYpGjwyQUewO-M-lyEMs8,7729
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=ztIw6rMR4t1289_TPIGYwE6qarl_YbSOGj5Ep3rUMqs,11803
|
4
4
|
pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
@@ -11,18 +11,18 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
|
|
11
11
|
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
12
12
|
pyerualjetwork/model_operations.py,sha256=RKqnh7-MByFosxqme4q4jC1lOndX26O-OVXYV6ZxoEE,12965
|
13
13
|
pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
|
14
|
-
pyerualjetwork/plan.py,sha256=
|
15
|
-
pyerualjetwork/plan_cuda.py,sha256=
|
14
|
+
pyerualjetwork/plan.py,sha256=ApMQC46_I8qtMqO4lLYLme--SGcMRg-GRo1-gSb3A3I,31894
|
15
|
+
pyerualjetwork/plan_cuda.py,sha256=ifXiyZs8y3N8b6BbM-T8fMrvzAal-zHqcxFlqwnfwII,33256
|
16
16
|
pyerualjetwork/planeat.py,sha256=uRX-hDywGOai6hHhbYrmcRodNZOg4WCQeJWZbdMlZs8,39470
|
17
17
|
pyerualjetwork/planeat_cuda.py,sha256=QNHCQLkR0MNFqyN2iHAtC7cbf8qZiD3p_54YH3lnMFA,39529
|
18
18
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
19
|
pyerualjetwork/visualizations.py,sha256=VL00sX2DZz83F__PyEJH9s1LizuXpOBzWjnoSjMJIJ0,28770
|
20
20
|
pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
21
|
-
pyerualjetwork_afterburner/__init__.py,sha256=
|
21
|
+
pyerualjetwork_afterburner/__init__.py,sha256=JGAmlalrkQx2Vn--wZXgs-3Y5cYYSxyBVxRD-r5O2x4,651
|
22
22
|
pyerualjetwork_afterburner/activation_functions.py,sha256=bKf00lsuuLJNO-4vVp4OqBi4zJ-qZ8L3v-vl52notkY,7721
|
23
23
|
pyerualjetwork_afterburner/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
24
24
|
pyerualjetwork_afterburner/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
25
|
-
pyerualjetwork_afterburner/data_operations_cuda.py,sha256=
|
25
|
+
pyerualjetwork_afterburner/data_operations_cuda.py,sha256=ZcjmLXE1-HVwedextYdJZ1rgrns1OfSekzFpr1a9m6o,17625
|
26
26
|
pyerualjetwork_afterburner/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
27
27
|
pyerualjetwork_afterburner/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
28
28
|
pyerualjetwork_afterburner/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
@@ -32,13 +32,13 @@ pyerualjetwork_afterburner/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2
|
|
32
32
|
pyerualjetwork_afterburner/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
|
33
33
|
pyerualjetwork_afterburner/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
|
34
34
|
pyerualjetwork_afterburner/plan.py,sha256=Gxv8ii4brTYMzzFZBP-X6kkwc6w6vtTPiMmqVOAqoq8,21972
|
35
|
-
pyerualjetwork_afterburner/plan_cuda.py,sha256=
|
35
|
+
pyerualjetwork_afterburner/plan_cuda.py,sha256=oZ4JMyXg6rU2AvD-aOacQ3zXf0-rWrSODZDKnDs8y9Q,22755
|
36
36
|
pyerualjetwork_afterburner/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
|
37
37
|
pyerualjetwork_afterburner/planeat_cuda.py,sha256=KnU54osvwrMVvdO4fww7BqFBoq0I8c2YcZOVHD8l69g,37494
|
38
38
|
pyerualjetwork_afterburner/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
39
39
|
pyerualjetwork_afterburner/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
|
40
40
|
pyerualjetwork_afterburner/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
41
|
-
pyerualjetwork-4.3.
|
42
|
-
pyerualjetwork-4.3.
|
43
|
-
pyerualjetwork-4.3.
|
44
|
-
pyerualjetwork-4.3.
|
41
|
+
pyerualjetwork-4.3.5.dist-info/METADATA,sha256=eqYwEb5qcka3BM1WHWdfKk_1NCEJU26aLfXFYGWc0Pw,8248
|
42
|
+
pyerualjetwork-4.3.5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
43
|
+
pyerualjetwork-4.3.5.dist-info/top_level.txt,sha256=uK64ge08QQoPuXM3aiRVPgiQQtl8Fxm2-HieIut5Lwo,42
|
44
|
+
pyerualjetwork-4.3.5.dist-info/RECORD,,
|
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.3.
|
1
|
+
__version__ = "4.3.5-afterburner"
|
2
2
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
3
3
|
|
4
4
|
def print_version(__version__):
|
@@ -17,7 +17,7 @@ def encode_one_hot(y_train, y_test=None, summary=False):
|
|
17
17
|
tuple: One-hot encoded y_train and (if given) y_test.
|
18
18
|
"""
|
19
19
|
|
20
|
-
from memory_operations import optimize_labels, transfer_to_cpu
|
20
|
+
from .memory_operations import optimize_labels, transfer_to_cpu
|
21
21
|
|
22
22
|
y_train = optimize_labels(y_train, one_hot_encoded=False, cuda=True)
|
23
23
|
y_test = optimize_labels(y_test, one_hot_encoded=False, cuda=True)
|
@@ -23,7 +23,7 @@ from .data_operations_cuda import normalization
|
|
23
23
|
from .loss_functions_cuda import binary_crossentropy, categorical_crossentropy
|
24
24
|
from .activation_functions_cuda import apply_activation, all_activations
|
25
25
|
from .metrics_cuda import metrics
|
26
|
-
from model_operations_cuda import get_acc, get_preds, get_preds_softmax
|
26
|
+
from .model_operations_cuda import get_acc, get_preds, get_preds_softmax
|
27
27
|
from .memory_operations import transfer_to_gpu, transfer_to_cpu, optimize_labels
|
28
28
|
from .visualizations_cuda import (
|
29
29
|
draw_neural_web,
|
@@ -151,7 +151,7 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
|
|
151
151
|
|
152
152
|
"""
|
153
153
|
|
154
|
-
from planeat_cuda import define_genomes
|
154
|
+
from .planeat_cuda import define_genomes
|
155
155
|
|
156
156
|
data = 'Train'
|
157
157
|
|
@@ -165,13 +165,13 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
|
|
165
165
|
x_train = transfer_to_gpu(x_train, dtype=dtype)
|
166
166
|
y_train = transfer_to_gpu(y_train, dtype=y_train.dtype)
|
167
167
|
|
168
|
-
from data_operations_cuda import batcher
|
168
|
+
from .data_operations_cuda import batcher
|
169
169
|
|
170
170
|
elif memory == 'cpu':
|
171
171
|
x_train = transfer_to_cpu(x_train, dtype=dtype)
|
172
172
|
y_train = transfer_to_cpu(y_train, dtype=y_train.dtype)
|
173
173
|
|
174
|
-
from data_operations import batcher
|
174
|
+
from .data_operations import batcher
|
175
175
|
|
176
176
|
else:
|
177
177
|
raise ValueError("memory parameter must be 'cpu' or 'gpu'.")
|
File without changes
|
File without changes
|