pyerualjetwork 4.3.11__py3-none-any.whl → 4.3.12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/plan.py +5 -2
- pyerualjetwork/plan_cuda.py +2 -2
- pyerualjetwork/planeat.py +3 -1
- pyerualjetwork/planeat_cuda.py +2 -0
- {pyerualjetwork-4.3.11.dist-info → pyerualjetwork-4.3.12.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.3.11.dist-info → pyerualjetwork-4.3.12.dist-info}/RECORD +9 -9
- {pyerualjetwork-4.3.11.dist-info → pyerualjetwork-4.3.12.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.3.11.dist-info → pyerualjetwork-4.3.12.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.3.
|
1
|
+
__version__ = "4.3.12"
|
2
2
|
__update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
|
3
3
|
* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
|
4
4
|
* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
pyerualjetwork/plan.py
CHANGED
@@ -119,13 +119,16 @@ def learner(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1,
|
|
119
119
|
batch_size=0.05,
|
120
120
|
interval=16.67)
|
121
121
|
```
|
122
|
-
|
123
|
-
loss (str, optional): For visualizing and monitoring. PLAN neural networks doesn't need any loss function in training. options: ('categorical_crossentropy' or 'binary_crossentropy') Default is 'categorical_crossentropy'.
|
122
|
+
loss (str, optional): options: ('categorical_crossentropy' or 'binary_crossentropy') Default is 'categorical_crossentropy'.
|
124
123
|
|
125
124
|
target_acc (float, optional): The target accuracy to stop training early when achieved. Default is None.
|
126
125
|
|
127
126
|
target_loss (float, optional): The target loss to stop training early when achieved. Default is None.
|
128
127
|
|
128
|
+
acc_impact (float, optional): Impact of accuracy for optimization [0-1]. Default: 0.9
|
129
|
+
|
130
|
+
loss_impact (float, optional): Impact of loss for optimization [0-1]. Default: 0.1
|
131
|
+
|
129
132
|
fit_start (bool, optional): If the fit_start parameter is set to True, the initial generation population undergoes a simple short training process using the PLAN algorithm. This allows for a very robust starting point, especially for large and complex datasets. However, for small or relatively simple datasets, it may result in unnecessary computational overhead. When fit_start is True, completing the first generation may take slightly longer (this increase in computational cost applies only to the first generation and does not affect subsequent generations). If fit_start is set to False, the initial population will be entirely random. Options: True or False. Default: True
|
130
133
|
|
131
134
|
gen (int, optional): The generation count for genetic optimization.
|
pyerualjetwork/plan_cuda.py
CHANGED
@@ -130,9 +130,9 @@ def learner(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1,
|
|
130
130
|
|
131
131
|
batch_size (float, optional): Batch size is used in the prediction process to receive train feedback by dividing the train data into chunks and selecting activations based on randomly chosen partitions. This process reduces computational cost and time while still covering the entire test set due to random selection, so it doesn't significantly impact accuracy. For example, a batch size of 0.08 means each train batch represents 8% of the train set. Default is 1. (%100 of train)
|
132
132
|
|
133
|
-
|
133
|
+
acc_impact (float, optional): Impact of accuracy for optimization [0-1]. Default: 0.9
|
134
134
|
|
135
|
-
|
135
|
+
loss_impact (float, optional): Impact of loss for optimization [0-1]. Default: 0.1
|
136
136
|
|
137
137
|
pop_size (int, optional): Population size of each generation. Default: count of activation functions
|
138
138
|
|
pyerualjetwork/planeat.py
CHANGED
@@ -116,7 +116,7 @@ def evolver(weights,
|
|
116
116
|
maximum reward obtained. Also shows the current configuration. Default is False.
|
117
117
|
|
118
118
|
strategy (str, optional): The strategy for combining the best and bad genomes. Options:
|
119
|
-
- 'normal_selective': Normal selection based on
|
119
|
+
- 'normal_selective': Normal selection based on fitness, where a portion of the bad genes are discarded.
|
120
120
|
- 'more_selective': A more selective strategy, where fewer bad genes survive.
|
121
121
|
- 'less_selective': A less selective strategy, where more bad genes survive.
|
122
122
|
Default is 'normal_selective'.
|
@@ -143,6 +143,8 @@ def evolver(weights,
|
|
143
143
|
Must be in the range [0, 1]. Also affects the mutation probability of the best genomes inversely.
|
144
144
|
For example, a value of 0.7 for bad genomes implies 0.3 for best genomes. Default: Determined by `policy`.
|
145
145
|
|
146
|
+
bad_genomes_selection_prob (float, optional): The probability of crossover parents are bad genomes ? [0-1] Default: Determined by `policy`.
|
147
|
+
|
146
148
|
activation_mutate_prob (float, optional): The probability of applying mutation to the activation functions.
|
147
149
|
Must be in the range [0, 1]. Default is 1 (%100).
|
148
150
|
|
pyerualjetwork/planeat_cuda.py
CHANGED
@@ -145,6 +145,8 @@ def evolver(weights,
|
|
145
145
|
Must be in the range [0, 1]. Also affects the mutation probability of the best genomes inversely.
|
146
146
|
For example, a value of 0.7 for bad genomes implies 0.3 for best genomes. Default: Determined by `policy`.
|
147
147
|
|
148
|
+
bad_genomes_selection_prob (float, optional): The probability of crossover parents are bad genomes ? [0-1] Default: Determined by `policy`.
|
149
|
+
|
148
150
|
activation_mutate_prob (float, optional): The probability of applying mutation to the activation functions.
|
149
151
|
Must be in the range [0, 1]. Default is 0.5 (50%).
|
150
152
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.3.
|
3
|
+
Version: 4.3.12
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=fJItQArSdhwY3VlHiV7LjyWy21XGRdOUPNaHZIyWFow,1280
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=Ms0AGBqkJuCA42ht64MSQnO54Td_1eDGquedpoBDVbc,7642
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
|
4
4
|
pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
|
@@ -12,14 +12,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
|
|
12
12
|
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
13
13
|
pyerualjetwork/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
|
14
14
|
pyerualjetwork/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
|
15
|
-
pyerualjetwork/plan.py,sha256=
|
16
|
-
pyerualjetwork/plan_cuda.py,sha256=
|
17
|
-
pyerualjetwork/planeat.py,sha256=
|
18
|
-
pyerualjetwork/planeat_cuda.py,sha256=
|
15
|
+
pyerualjetwork/plan.py,sha256=36ZkwcE8HVkx_WIFbfGe4xAjUPwL0KrJQmI-3_NuryQ,22391
|
16
|
+
pyerualjetwork/plan_cuda.py,sha256=qVhAG2ZS1zudygegILPQD5gEWWCm8-JhMvNtFtoxuds,23394
|
17
|
+
pyerualjetwork/planeat.py,sha256=4BVC7km2O93hB5qK3q6-GB4sO-2WHwio9E780_e49Cs,37721
|
18
|
+
pyerualjetwork/planeat_cuda.py,sha256=8ftHNWD3DXKHXF9JHjmoRhM7ylcVLWmYCMSyIcVpSjg,37776
|
19
19
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
20
20
|
pyerualjetwork/visualizations.py,sha256=t1BqnFUH5jKiPdFMI2kWjFg6-amrBV0wvW05aD77NQs,28288
|
21
21
|
pyerualjetwork/visualizations_cuda.py,sha256=PYRqj4QYUbuYMYcNwO8yaTPB-jK7E6kZHhTrAi0lwPU,28749
|
22
|
-
pyerualjetwork-4.3.
|
23
|
-
pyerualjetwork-4.3.
|
24
|
-
pyerualjetwork-4.3.
|
25
|
-
pyerualjetwork-4.3.
|
22
|
+
pyerualjetwork-4.3.12.dist-info/METADATA,sha256=9SFZMDzualijFQdFP8B5qs_DKIi0xX8Vfj8lWCJxpPk,7506
|
23
|
+
pyerualjetwork-4.3.12.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
24
|
+
pyerualjetwork-4.3.12.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
25
|
+
pyerualjetwork-4.3.12.dist-info/RECORD,,
|
File without changes
|
File without changes
|