pyerualjetwork 4.3.11__py3-none-any.whl → 4.3.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.11"
1
+ __version__ = "4.3.12"
2
2
  __update__ = """* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES
3
3
  * PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main
4
4
  * PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
pyerualjetwork/plan.py CHANGED
@@ -119,13 +119,16 @@ def learner(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1,
119
119
  batch_size=0.05,
120
120
  interval=16.67)
121
121
  ```
122
-
123
- loss (str, optional): For visualizing and monitoring. PLAN neural networks doesn't need any loss function in training. options: ('categorical_crossentropy' or 'binary_crossentropy') Default is 'categorical_crossentropy'.
122
+ loss (str, optional): options: ('categorical_crossentropy' or 'binary_crossentropy') Default is 'categorical_crossentropy'.
124
123
 
125
124
  target_acc (float, optional): The target accuracy to stop training early when achieved. Default is None.
126
125
 
127
126
  target_loss (float, optional): The target loss to stop training early when achieved. Default is None.
128
127
 
128
+ acc_impact (float, optional): Impact of accuracy for optimization [0-1]. Default: 0.9
129
+
130
+ loss_impact (float, optional): Impact of loss for optimization [0-1]. Default: 0.1
131
+
129
132
  fit_start (bool, optional): If the fit_start parameter is set to True, the initial generation population undergoes a simple short training process using the PLAN algorithm. This allows for a very robust starting point, especially for large and complex datasets. However, for small or relatively simple datasets, it may result in unnecessary computational overhead. When fit_start is True, completing the first generation may take slightly longer (this increase in computational cost applies only to the first generation and does not affect subsequent generations). If fit_start is set to False, the initial population will be entirely random. Options: True or False. Default: True
130
133
 
131
134
  gen (int, optional): The generation count for genetic optimization.
@@ -130,9 +130,9 @@ def learner(x_train, y_train, optimizer, fit_start=True, gen=None, batch_size=1,
130
130
 
131
131
  batch_size (float, optional): Batch size is used in the prediction process to receive train feedback by dividing the train data into chunks and selecting activations based on randomly chosen partitions. This process reduces computational cost and time while still covering the entire test set due to random selection, so it doesn't significantly impact accuracy. For example, a batch size of 0.08 means each train batch represents 8% of the train set. Default is 1. (%100 of train)
132
132
 
133
- loss_impact (float, optional): Impact of loss during evolve. [0-1] Default: 0.1
133
+ acc_impact (float, optional): Impact of accuracy for optimization [0-1]. Default: 0.9
134
134
 
135
- acc_impact (float, optional): Impact of accuracy during evolve. [0-1] Default: 0.9
135
+ loss_impact (float, optional): Impact of loss for optimization [0-1]. Default: 0.1
136
136
 
137
137
  pop_size (int, optional): Population size of each generation. Default: count of activation functions
138
138
 
pyerualjetwork/planeat.py CHANGED
@@ -116,7 +116,7 @@ def evolver(weights,
116
116
  maximum reward obtained. Also shows the current configuration. Default is False.
117
117
 
118
118
  strategy (str, optional): The strategy for combining the best and bad genomes. Options:
119
- - 'normal_selective': Normal selection based on reward, where a portion of the bad genes are discarded.
119
+ - 'normal_selective': Normal selection based on fitness, where a portion of the bad genes are discarded.
120
120
  - 'more_selective': A more selective strategy, where fewer bad genes survive.
121
121
  - 'less_selective': A less selective strategy, where more bad genes survive.
122
122
  Default is 'normal_selective'.
@@ -143,6 +143,8 @@ def evolver(weights,
143
143
  Must be in the range [0, 1]. Also affects the mutation probability of the best genomes inversely.
144
144
  For example, a value of 0.7 for bad genomes implies 0.3 for best genomes. Default: Determined by `policy`.
145
145
 
146
+ bad_genomes_selection_prob (float, optional): The probability of crossover parents are bad genomes ? [0-1] Default: Determined by `policy`.
147
+
146
148
  activation_mutate_prob (float, optional): The probability of applying mutation to the activation functions.
147
149
  Must be in the range [0, 1]. Default is 1 (%100).
148
150
 
@@ -145,6 +145,8 @@ def evolver(weights,
145
145
  Must be in the range [0, 1]. Also affects the mutation probability of the best genomes inversely.
146
146
  For example, a value of 0.7 for bad genomes implies 0.3 for best genomes. Default: Determined by `policy`.
147
147
 
148
+ bad_genomes_selection_prob (float, optional): The probability of crossover parents are bad genomes ? [0-1] Default: Determined by `policy`.
149
+
148
150
  activation_mutate_prob (float, optional): The probability of applying mutation to the activation functions.
149
151
  Must be in the range [0, 1]. Default is 0.5 (50%).
150
152
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.11
3
+ Version: 4.3.12
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=5snQTX8efGK_JdtgdrZU57alCIlsFlcYror1R3HFFDQ,1280
1
+ pyerualjetwork/__init__.py,sha256=fJItQArSdhwY3VlHiV7LjyWy21XGRdOUPNaHZIyWFow,1280
2
2
  pyerualjetwork/activation_functions.py,sha256=Ms0AGBqkJuCA42ht64MSQnO54Td_1eDGquedpoBDVbc,7642
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=5y1Ti3GDfDteQDCUmODwe7tAyDAUlDTKmIikChQ8d6g,7772
4
4
  pyerualjetwork/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
@@ -12,14 +12,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
12
12
  pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
13
13
  pyerualjetwork/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
14
14
  pyerualjetwork/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
15
- pyerualjetwork/plan.py,sha256=M8KVSXUjmSkf4bK7FnizLZjWQfI_3suHIJ-XminM2SM,22291
16
- pyerualjetwork/plan_cuda.py,sha256=hRPPw4YsiVpfoXkNN1le1zaVHJuSySvihiFBt2eHT7c,23388
17
- pyerualjetwork/planeat.py,sha256=FBoYirDE8R0zGtB-EFsHdQ50RijC7rnZHqDIiXx67rs,37571
18
- pyerualjetwork/planeat_cuda.py,sha256=5suVlOfHcThhGbPlHbxAqbp5-rpbw4E2H6trvDvrmg4,37627
15
+ pyerualjetwork/plan.py,sha256=36ZkwcE8HVkx_WIFbfGe4xAjUPwL0KrJQmI-3_NuryQ,22391
16
+ pyerualjetwork/plan_cuda.py,sha256=qVhAG2ZS1zudygegILPQD5gEWWCm8-JhMvNtFtoxuds,23394
17
+ pyerualjetwork/planeat.py,sha256=4BVC7km2O93hB5qK3q6-GB4sO-2WHwio9E780_e49Cs,37721
18
+ pyerualjetwork/planeat_cuda.py,sha256=8ftHNWD3DXKHXF9JHjmoRhM7ylcVLWmYCMSyIcVpSjg,37776
19
19
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
20
20
  pyerualjetwork/visualizations.py,sha256=t1BqnFUH5jKiPdFMI2kWjFg6-amrBV0wvW05aD77NQs,28288
21
21
  pyerualjetwork/visualizations_cuda.py,sha256=PYRqj4QYUbuYMYcNwO8yaTPB-jK7E6kZHhTrAi0lwPU,28749
22
- pyerualjetwork-4.3.11.dist-info/METADATA,sha256=6P6WgEt2RMPwvhAVg1cswZvq_fNB875egS_dEiabzlo,7506
23
- pyerualjetwork-4.3.11.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
24
- pyerualjetwork-4.3.11.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
25
- pyerualjetwork-4.3.11.dist-info/RECORD,,
22
+ pyerualjetwork-4.3.12.dist-info/METADATA,sha256=9SFZMDzualijFQdFP8B5qs_DKIi0xX8Vfj8lWCJxpPk,7506
23
+ pyerualjetwork-4.3.12.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
24
+ pyerualjetwork-4.3.12.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
25
+ pyerualjetwork-4.3.12.dist-info/RECORD,,