pyerualjetwork 4.3.0__py3-none-any.whl → 4.3.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (28) hide show
  1. {pyerualjetwork-4.3.0.dist-info → pyerualjetwork-4.3.0.1.dist-info}/METADATA +1 -1
  2. pyerualjetwork-4.3.0.1.dist-info/RECORD +24 -0
  3. pyerualjetwork-4.3.0.1.dist-info/top_level.txt +1 -0
  4. {pyerualjetwork → pyerualjetwork-jetstorm}/__init__.py +1 -1
  5. pyerualjetwork-jetstorm/activation_functions.py +291 -0
  6. pyerualjetwork-jetstorm/activation_functions_cuda.py +290 -0
  7. {pyerualjetwork → pyerualjetwork-jetstorm}/model_operations.py +14 -14
  8. {pyerualjetwork → pyerualjetwork-jetstorm}/model_operations_cuda.py +16 -17
  9. {pyerualjetwork → pyerualjetwork-jetstorm}/plan.py +44 -246
  10. {pyerualjetwork → pyerualjetwork-jetstorm}/plan_cuda.py +37 -256
  11. {pyerualjetwork → pyerualjetwork-jetstorm}/planeat.py +11 -43
  12. {pyerualjetwork → pyerualjetwork-jetstorm}/planeat_cuda.py +8 -44
  13. pyerualjetwork/activation_functions.py +0 -343
  14. pyerualjetwork/activation_functions_cuda.py +0 -340
  15. pyerualjetwork-4.3.0.dist-info/RECORD +0 -24
  16. pyerualjetwork-4.3.0.dist-info/top_level.txt +0 -1
  17. {pyerualjetwork-4.3.0.dist-info → pyerualjetwork-4.3.0.1.dist-info}/WHEEL +0 -0
  18. {pyerualjetwork → pyerualjetwork-jetstorm}/data_operations.py +0 -0
  19. {pyerualjetwork → pyerualjetwork-jetstorm}/data_operations_cuda.py +0 -0
  20. {pyerualjetwork → pyerualjetwork-jetstorm}/help.py +0 -0
  21. {pyerualjetwork → pyerualjetwork-jetstorm}/loss_functions.py +0 -0
  22. {pyerualjetwork → pyerualjetwork-jetstorm}/loss_functions_cuda.py +0 -0
  23. {pyerualjetwork → pyerualjetwork-jetstorm}/memory_operations.py +0 -0
  24. {pyerualjetwork → pyerualjetwork-jetstorm}/metrics.py +0 -0
  25. {pyerualjetwork → pyerualjetwork-jetstorm}/metrics_cuda.py +0 -0
  26. {pyerualjetwork → pyerualjetwork-jetstorm}/ui.py +0 -0
  27. {pyerualjetwork → pyerualjetwork-jetstorm}/visualizations.py +0 -0
  28. {pyerualjetwork → pyerualjetwork-jetstorm}/visualizations_cuda.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.3.0
3
+ Version: 4.3.0.1
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -0,0 +1,24 @@
1
+ pyerualjetwork-jetstorm/__init__.py,sha256=-TIurJsDmadwjPfwS1FgfW8pZPGJPWIslh3FuZD4E1M,641
2
+ pyerualjetwork-jetstorm/activation_functions.py,sha256=2bv7o4EPEFr8cSKq7KI04HhMUyxgBpe8soGvN98Mazg,7740
3
+ pyerualjetwork-jetstorm/activation_functions_cuda.py,sha256=Ua606lsj9LQahfLi6oZMkSyzyPT7ySrvC6qfACNCbL8,7781
4
+ pyerualjetwork-jetstorm/data_operations.py,sha256=Flteouu6rfSo2uHMqBHuzO02dXmbNa-I5qWmUpGTZ5Y,14760
5
+ pyerualjetwork-jetstorm/data_operations_cuda.py,sha256=UpoJoFhIwTU4xg9dVuLAxLAT4CkRaGsxvtJG9j1xrNo,17629
6
+ pyerualjetwork-jetstorm/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
7
+ pyerualjetwork-jetstorm/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
8
+ pyerualjetwork-jetstorm/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
9
+ pyerualjetwork-jetstorm/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
10
+ pyerualjetwork-jetstorm/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
11
+ pyerualjetwork-jetstorm/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
12
+ pyerualjetwork-jetstorm/model_operations.py,sha256=MCSCNYiiICRVZITobtS3ZIWmH5Q9gjyELuH32sAdgg4,12649
13
+ pyerualjetwork-jetstorm/model_operations_cuda.py,sha256=NT01BK5nrDYE7H1x3KnSI8gmx0QTGGB0mP_LqEb1uuU,13157
14
+ pyerualjetwork-jetstorm/plan.py,sha256=Gxv8ii4brTYMzzFZBP-X6kkwc6w6vtTPiMmqVOAqoq8,21972
15
+ pyerualjetwork-jetstorm/plan_cuda.py,sha256=usyL-rWfczko8MQ-tmgMyt7UrKoH7IG3FX3edBiq-vc,22716
16
+ pyerualjetwork-jetstorm/planeat.py,sha256=Lq5R0aMS4UIdZdbUKsKDv5g0WLwYryomR3IQYb8vAa4,37573
17
+ pyerualjetwork-jetstorm/planeat_cuda.py,sha256=dZdKrrhdnoTjcF8Uv23Y4UvlOfizazNyx9v6QsdpIoo,37621
18
+ pyerualjetwork-jetstorm/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
+ pyerualjetwork-jetstorm/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
20
+ pyerualjetwork-jetstorm/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
21
+ pyerualjetwork-4.3.0.1.dist-info/METADATA,sha256=WTbdut7mIcjku9CnReK_axbF5G1Fz1i3rXiakGS6IRs,7504
22
+ pyerualjetwork-4.3.0.1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
+ pyerualjetwork-4.3.0.1.dist-info/top_level.txt,sha256=LZ-gnOoO1Riaytpmz1-hjJJ-jNG8zzq1iwNVTJwa3Ek,24
24
+ pyerualjetwork-4.3.0.1.dist-info/RECORD,,
@@ -0,0 +1 @@
1
+ pyerualjetwork-jetstorm
@@ -1,4 +1,4 @@
1
- __version__ = "4.3.0"
1
+ __version__ = "4.3.0.1"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
@@ -0,0 +1,291 @@
1
+ import numpy as np
2
+ from scipy.special import expit, softmax
3
+ import warnings
4
+
5
+
6
+ # ACTIVATION FUNCTIONS -----
7
+
8
+ def all_activations():
9
+
10
+ activations_list = ['linear', 'sigmoid', 'relu', 'tanh', 'circular', 'spiral', 'swish', 'sin_plus', 'mod_circular', 'tanh_circular', 'leaky_relu', 'softplus', 'elu', 'gelu', 'selu', 'sinakt', 'p_squared', 'sglu', 'dlrelu', 'exsig', 'acos', 'gla', 'srelu', 'qelu', 'isra', 'waveakt', 'arctan', 'bent_identity', 'sech', 'softsign', 'pwl', 'cubic', 'gaussian', 'sine', 'tanh_square', 'mod_sigmoid', 'quartic', 'square_quartic', 'cubic_quadratic', 'exp_cubic', 'sine_square', 'logarithmic', 'scaled_cubic', 'sine_offset']
11
+
12
+ return activations_list
13
+
14
+ def spiral_activation(x):
15
+
16
+ r = np.sqrt(np.sum(x**2))
17
+
18
+ theta = np.arctan2(x[1:], x[:-1])
19
+
20
+ spiral_x = r * np.cos(theta + r)
21
+ spiral_y = r * np.sin(theta + r)
22
+
23
+
24
+ spiral_output = np.concatenate(([spiral_x[0]], spiral_y))
25
+
26
+ return spiral_output
27
+
28
+
29
+ def Softmax(
30
+ x # num: Input data to be transformed using softmax function.
31
+ ):
32
+ """
33
+ Applies the softmax function to the input data.
34
+
35
+ Args:
36
+ (num): Input data to be transformed using softmax function.
37
+
38
+ Returns:
39
+ (num): Transformed data after applying softmax function.
40
+ """
41
+
42
+ return softmax(x)
43
+
44
+
45
+ def Sigmoid(
46
+ x # num: Input data to be transformed using sigmoid function.
47
+ ):
48
+ """
49
+ Applies the sigmoid function to the input data.
50
+
51
+ Args:
52
+ (num): Input data to be transformed using sigmoid function.
53
+
54
+ Returns:
55
+ (num): Transformed data after applying sigmoid function.
56
+ """
57
+ return expit(x)
58
+
59
+
60
+ def Relu(
61
+ x # num: Input data to be transformed using ReLU function.
62
+ ):
63
+ """
64
+ Applies the Rectified Linear Unit (ReLU) function to the input data.
65
+
66
+ Args:
67
+ (num): Input data to be transformed using ReLU function.
68
+
69
+ Returns:
70
+ (num): Transformed data after applying ReLU function.
71
+ """
72
+
73
+ return np.maximum(0, x)
74
+
75
+
76
+ def tanh(x):
77
+ return np.tanh(x)
78
+
79
+ def swish(x):
80
+ return x * (1 / (1 + np.exp(-x)))
81
+
82
+ def sin_plus(x):
83
+ return (np.sin(x) + 1) / 2
84
+
85
+ def modular_circular_activation(x, period=2*np.pi):
86
+ return np.mod(x, period) / period
87
+
88
+ def tanh_circular_activation(x):
89
+ return (np.tanh(x) + 1) / 2
90
+
91
+ def leaky_relu(x, alpha=0.01):
92
+ return np.where(x > 0, x, alpha * x)
93
+
94
+ def softplus(x):
95
+ return np.log(1 + np.exp(x))
96
+
97
+ def elu(x, alpha=1.0):
98
+ return np.where(x > 0, x, alpha * (np.exp(x) - 1))
99
+
100
+ def gelu(x):
101
+ return 0.5 * x * (1 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
102
+
103
+ def selu(x, lambda_=1.0507, alpha=1.6733):
104
+ return lambda_ * np.where(x > 0, x, alpha * (np.exp(x) - 1))
105
+
106
+ def sinakt(x):
107
+ return np.sin(x) + np.cos(x)
108
+
109
+ def p_squared(x, alpha=1.0, beta=0.0):
110
+ return alpha * x**2 + beta * x
111
+
112
+ def sglu(x, alpha=1.0):
113
+ return softmax(alpha * x) * x
114
+
115
+ # 4. Double Leaky ReLU (DLReLU)
116
+ def dlrelu(x):
117
+ return np.maximum(0.01 * x, x) + np.minimum(0.01 * x, 0.1 * x)
118
+
119
+ # 5. Exponential Sigmoid (ExSig)
120
+ def exsig(x):
121
+ return 1 / (1 + np.exp(-x**2))
122
+
123
+ # 6. Adaptive Cosine Activation (ACos)
124
+ def acos(x, alpha=1.0, beta=0.0):
125
+ return np.cos(alpha * x + beta)
126
+
127
+ # 7. Gaussian-like Activation (GLA)
128
+ def gla(x, alpha=1.0, mu=0.0):
129
+ return np.exp(-alpha * (x - mu)**2)
130
+
131
+ # 8. Swish ReLU (SReLU)
132
+ def srelu(x):
133
+ return x * (1 / (1 + np.exp(-x))) + np.maximum(0, x)
134
+
135
+ # 9. Quadratic Exponential Linear Unit (QELU)
136
+ def qelu(x):
137
+ return x**2 * np.exp(x) - 1
138
+
139
+ # 10. Inverse Square Root Activation (ISRA)
140
+ def isra(x):
141
+ return x / np.sqrt(np.abs(x) + 1)
142
+
143
+ def waveakt(x, alpha=1.0, beta=2.0, gamma=3.0):
144
+ return np.sin(alpha * x) * np.cos(beta * x) * np.sin(gamma * x)
145
+
146
+ def arctan(x):
147
+ return np.arctan(x)
148
+
149
+ def bent_identity(x):
150
+ return (np.sqrt(x**2 + 1) - 1) / 2 + x
151
+
152
+ def circular_activation(x, scale=2.0, frequency=1.0, shift=0.0):
153
+
154
+ n_features = x.shape[0]
155
+
156
+ circular_output = np.zeros_like(x)
157
+
158
+ for i in range(n_features):
159
+
160
+ r = np.sqrt(np.sum(x**2))
161
+ theta = 2 * np.pi * (i / n_features) + shift
162
+
163
+ circular_x = r * np.cos(theta + frequency * r) * scale
164
+ circular_y = r * np.sin(theta + frequency * r) * scale
165
+
166
+ if i % 2 == 0:
167
+ circular_output[i] = circular_x
168
+ else:
169
+ circular_output[i] = circular_y
170
+
171
+ return circular_output
172
+
173
+ def sech(x):
174
+ return 2 / (np.exp(x) + np.exp(-x))
175
+
176
+ def softsign(x):
177
+ return x / (1 + np.abs(x))
178
+
179
+ def pwl(x, alpha=0.5, beta=1.5):
180
+ return np.where(x <= 0, alpha * x, beta * x)
181
+
182
+ def cubic(x):
183
+ return x**3
184
+
185
+ def gaussian(x, alpha=1.0, mu=0.0):
186
+ return np.exp(-alpha * (x - mu)**2)
187
+
188
+ def sine(x, alpha=1.0):
189
+ return np.sin(alpha * x)
190
+
191
+ def tanh_square(x):
192
+ return np.tanh(x)**2
193
+
194
+ def mod_sigmoid(x, alpha=1.0, beta=0.0):
195
+ return 1 / (1 + np.exp(-alpha * x + beta))
196
+
197
+ def quartic(x):
198
+ return x**4
199
+
200
+ def square_quartic(x):
201
+ return (x**2)**2
202
+
203
+ def cubic_quadratic(x):
204
+ return x**3 * (x**2)
205
+
206
+ def exp_cubic(x):
207
+ return np.exp(x**3)
208
+
209
+ def sine_square(x):
210
+ return np.sin(x)**2
211
+
212
+ def logarithmic(x):
213
+ return np.log(x**2 + 1)
214
+
215
+ def scaled_cubic(x, alpha=1.0):
216
+ return alpha * x**3
217
+
218
+ def sine_offset(x, beta=0.0):
219
+ return np.sin(x + beta)
220
+
221
+
222
+ def apply_activation(Input, activation_list):
223
+ """
224
+ Applies activation functions for inputs
225
+
226
+ Args:
227
+ Input (numpy.ndarray):
228
+ activation_list (list):
229
+ """
230
+ origin_input = np.copy(Input)
231
+
232
+ activation_functions = {
233
+ 'sigmoid': Sigmoid,
234
+ 'swish': swish,
235
+ 'mod_circular': modular_circular_activation,
236
+ 'tanh_circular': tanh_circular_activation,
237
+ 'leaky_relu': leaky_relu,
238
+ 'relu': Relu,
239
+ 'softplus': softplus,
240
+ 'elu': elu,
241
+ 'gelu': gelu,
242
+ 'selu': selu,
243
+ 'tanh': tanh,
244
+ 'sinakt': sinakt,
245
+ 'p_squared': p_squared,
246
+ 'sglu': lambda x: sglu(x, alpha=1.0),
247
+ 'dlrelu': dlrelu,
248
+ 'exsig': exsig,
249
+ 'sin_plus': sin_plus,
250
+ 'acos': lambda x: acos(x, alpha=1.0, beta=0.0),
251
+ 'gla': lambda x: gla(x, alpha=1.0, mu=0.0),
252
+ 'srelu': srelu,
253
+ 'qelu': qelu,
254
+ 'isra': isra,
255
+ 'waveakt': waveakt,
256
+ 'arctan': arctan,
257
+ 'bent_identity': bent_identity,
258
+ 'sech': sech,
259
+ 'softsign': softsign,
260
+ 'pwl': pwl,
261
+ 'cubic': cubic,
262
+ 'gaussian': gaussian,
263
+ 'sine': sine,
264
+ 'tanh_square': tanh_square,
265
+ 'mod_sigmoid': mod_sigmoid,
266
+ 'linear': lambda x: x,
267
+ 'quartic': quartic,
268
+ 'square_quartic': square_quartic,
269
+ 'cubic_quadratic': cubic_quadratic,
270
+ 'exp_cubic': exp_cubic,
271
+ 'sine_square': sine_square,
272
+ 'logarithmic': logarithmic,
273
+ 'scaled_cubic': lambda x: scaled_cubic(x, 1.0),
274
+ 'sine_offset': lambda x: sine_offset(x, 1.0),
275
+ 'spiral': spiral_activation,
276
+ 'circular': circular_activation
277
+ }
278
+
279
+ try:
280
+ valid_activations = [act for act in activation_list if act in activation_functions]
281
+
282
+ activation_outputs = np.stack([activation_functions[act](origin_input)
283
+ for act in valid_activations])
284
+
285
+ result = Input + np.sum(activation_outputs, axis=0)
286
+
287
+ return result
288
+
289
+ except Exception as e:
290
+ warnings.warn(f"Error in activation processing: {str(e)}", RuntimeWarning)
291
+ return Input
@@ -0,0 +1,290 @@
1
+ import cupy as cp
2
+ from scipy.special import expit, softmax
3
+ import warnings
4
+
5
+ # ACTIVATION FUNCTIONS ----
6
+
7
+ def all_activations():
8
+
9
+ activations_list = ['linear', 'sigmoid', 'relu', 'tanh', 'circular', 'spiral', 'swish', 'sin_plus', 'mod_circular', 'tanh_circular', 'leaky_relu', 'softplus', 'elu', 'gelu', 'selu', 'sinakt', 'p_squared', 'sglu', 'dlrelu', 'exsig', 'acos', 'gla', 'srelu', 'qelu', 'isra', 'waveakt', 'arctan', 'bent_identity', 'sech', 'softsign', 'pwl', 'cubic', 'gaussian', 'sine', 'tanh_square', 'mod_sigmoid', 'quartic', 'square_quartic', 'cubic_quadratic', 'exp_cubic', 'sine_square', 'logarithmic', 'scaled_cubic', 'sine_offset']
10
+
11
+ return activations_list
12
+
13
+ def spiral_activation(x):
14
+
15
+ r = cp.sqrt(cp.sum(x**2))
16
+
17
+ theta = cp.arctan2(x[1:], x[:-1])
18
+
19
+ spiral_x = r * cp.cos(theta + r)
20
+ spiral_y = r * cp.sin(theta + r)
21
+
22
+
23
+ spiral_output = cp.concatenate([cp.array([spiral_x[0]]), spiral_y])
24
+
25
+ return spiral_output
26
+
27
+
28
+ def Softmax(
29
+ x # num: Input data to be transformed using softmax function.
30
+ ):
31
+ """
32
+ Applies the softmax function to the input data.
33
+
34
+ Args:
35
+ (num): Input data to be transformed using softmax function.
36
+
37
+ Returns:
38
+ (num): Transformed data after applying softmax function.
39
+ """
40
+
41
+ return cp.array(softmax(x.get()))
42
+
43
+
44
+ def Sigmoid(
45
+ x # num: Input data to be transformed using sigmoid function.
46
+ ):
47
+ """
48
+ Applies the sigmoid function to the input data.
49
+
50
+ Args:
51
+ (num): Input data to be transformed using sigmoid function.
52
+
53
+ Returns:
54
+ (num): Transformed data after applying sigmoid function.
55
+ """
56
+ return expit(x)
57
+
58
+
59
+ def Relu(
60
+ x # num: Input data to be transformed using ReLU function.
61
+ ):
62
+ """
63
+ Applies the Rectified Linear Unit (ReLU) function to the input data.
64
+
65
+ Args:
66
+ (num): Input data to be transformed using ReLU function.
67
+
68
+ Returns:
69
+ (num): Transformed data after applying ReLU function.
70
+ """
71
+
72
+ return cp.maximum(0, x)
73
+
74
+
75
+ def tanh(x):
76
+ return cp.tanh(x)
77
+
78
+ def swish(x):
79
+ return x * (1 / (1 + cp.exp(-x)))
80
+
81
+ def sin_plus(x):
82
+ return (cp.sin(x) + 1) / 2
83
+
84
+ def modular_circular_activation(x, period=2*cp.pi):
85
+ return cp.mod(x, period) / period
86
+
87
+ def tanh_circular_activation(x):
88
+ return (cp.tanh(x) + 1) / 2
89
+
90
+ def leaky_relu(x, alpha=0.01):
91
+ return cp.where(x > 0, x, alpha * x)
92
+
93
+ def softplus(x):
94
+ return cp.log(1 + cp.exp(x))
95
+
96
+ def elu(x, alpha=1.0):
97
+ return cp.where(x > 0, x, alpha * (cp.exp(x) - 1))
98
+
99
+ def gelu(x):
100
+ return 0.5 * x * (1 + cp.tanh(cp.sqrt(2 / cp.pi) * (x + 0.044715 * cp.power(x, 3))))
101
+
102
+ def selu(x, lambda_=1.0507, alpha=1.6733):
103
+ return lambda_ * cp.where(x > 0, x, alpha * (cp.exp(x) - 1))
104
+
105
+ def sinakt(x):
106
+ return cp.sin(x) + cp.cos(x)
107
+
108
+ def p_squared(x, alpha=1.0, beta=0.0):
109
+ return alpha * x**2 + beta * x
110
+
111
+ def sglu(x, alpha=1.0):
112
+ return cp.array(softmax(alpha * x.get())) * x
113
+
114
+ # 4. Double Leaky ReLU (DLReLU)
115
+ def dlrelu(x):
116
+ return cp.maximum(0.01 * x, x) + cp.minimum(0.01 * x, 0.1 * x)
117
+
118
+ # 5. Exponential Sigmoid (ExSig)
119
+ def exsig(x):
120
+ return 1 / (1 + cp.exp(-x**2))
121
+
122
+ # 6. Adaptive Cosine Activation (ACos)
123
+ def acos(x, alpha=1.0, beta=0.0):
124
+ return cp.cos(alpha * x + beta)
125
+
126
+ # 7. Gaussian-like Activation (GLA)
127
+ def gla(x, alpha=1.0, mu=0.0):
128
+ return cp.exp(-alpha * (x - mu)**2)
129
+
130
+ # 8. Swish ReLU (SReLU)
131
+ def srelu(x):
132
+ return x * (1 / (1 + cp.exp(-x))) + cp.maximum(0, x)
133
+
134
+ # 9. Quadratic Exponential Linear Unit (QELU)
135
+ def qelu(x):
136
+ return x**2 * cp.exp(x) - 1
137
+
138
+ # 10. Inverse Square Root Activation (ISRA)
139
+ def isra(x):
140
+ return x / cp.sqrt(cp.abs(x) + 1)
141
+
142
+ def waveakt(x, alpha=1.0, beta=2.0, gamma=3.0):
143
+ return cp.sin(alpha * x) * cp.cos(beta * x) * cp.sin(gamma * x)
144
+
145
+ def arctan(x):
146
+ return cp.arctan(x)
147
+
148
+ def bent_identity(x):
149
+ return (cp.sqrt(x**2 + 1) - 1) / 2 + x
150
+
151
+ def circular_activation(x, scale=2.0, frequency=1.0, shift=0.0):
152
+
153
+ n_features = x.shape[0]
154
+
155
+ circular_output = cp.zeros_like(x)
156
+
157
+ for i in range(n_features):
158
+
159
+ r = cp.sqrt(cp.sum(x**2))
160
+ theta = 2 * cp.pi * (i / n_features) + shift
161
+
162
+ circular_x = r * cp.cos(theta + frequency * r) * scale
163
+ circular_y = r * cp.sin(theta + frequency * r) * scale
164
+
165
+ if i % 2 == 0:
166
+ circular_output[i] = circular_x
167
+ else:
168
+ circular_output[i] = circular_y
169
+
170
+ return circular_output
171
+
172
+ def sech(x):
173
+ return 2 / (cp.exp(x) + cp.exp(-x))
174
+
175
+ def softsign(x):
176
+ return x / (1 + cp.abs(x))
177
+
178
+ def pwl(x, alpha=0.5, beta=1.5):
179
+ return cp.where(x <= 0, alpha * x, beta * x)
180
+
181
+ def cubic(x):
182
+ return x**3
183
+
184
+ def gaussian(x, alpha=1.0, mu=0.0):
185
+ return cp.exp(-alpha * (x - mu)**2)
186
+
187
+ def sine(x, alpha=1.0):
188
+ return cp.sin(alpha * x)
189
+
190
+ def tanh_square(x):
191
+ return cp.tanh(x)**2
192
+
193
+ def mod_sigmoid(x, alpha=1.0, beta=0.0):
194
+ return 1 / (1 + cp.exp(-alpha * x + beta))
195
+
196
+ def quartic(x):
197
+ return x**4
198
+
199
+ def square_quartic(x):
200
+ return (x**2)**2
201
+
202
+ def cubic_quadratic(x):
203
+ return x**3 * (x**2)
204
+
205
+ def exp_cubic(x):
206
+ return cp.exp(x**3)
207
+
208
+ def sine_square(x):
209
+ return cp.sin(x)**2
210
+
211
+ def logarithmic(x):
212
+ return cp.log(x**2 + 1)
213
+
214
+ def scaled_cubic(x, alpha=1.0):
215
+ return alpha * x**3
216
+
217
+ def sine_offset(x, beta=0.0):
218
+ return cp.sin(x + beta)
219
+
220
+
221
+ def apply_activation(Input, activation_list):
222
+ """
223
+ Applies activation functions for inputs
224
+
225
+ Args:
226
+ Input (cupy.ndarray):
227
+ activation_list (list):
228
+ """
229
+ origin_input = cp.copy(Input)
230
+
231
+ activation_functions = {
232
+ 'sigmoid': Sigmoid,
233
+ 'swish': swish,
234
+ 'mod_circular': modular_circular_activation,
235
+ 'tanh_circular': tanh_circular_activation,
236
+ 'leaky_relu': leaky_relu,
237
+ 'relu': Relu,
238
+ 'softplus': softplus,
239
+ 'elu': elu,
240
+ 'gelu': gelu,
241
+ 'selu': selu,
242
+ 'tanh': tanh,
243
+ 'sinakt': sinakt,
244
+ 'p_squared': p_squared,
245
+ 'sglu': lambda x: sglu(x, alpha=1.0),
246
+ 'dlrelu': dlrelu,
247
+ 'exsig': exsig,
248
+ 'sin_plus': sin_plus,
249
+ 'acos': lambda x: acos(x, alpha=1.0, beta=0.0),
250
+ 'gla': lambda x: gla(x, alpha=1.0, mu=0.0),
251
+ 'srelu': srelu,
252
+ 'qelu': qelu,
253
+ 'isra': isra,
254
+ 'waveakt': waveakt,
255
+ 'arctan': arctan,
256
+ 'bent_identity': bent_identity,
257
+ 'sech': sech,
258
+ 'softsign': softsign,
259
+ 'pwl': pwl,
260
+ 'cubic': cubic,
261
+ 'gaussian': gaussian,
262
+ 'sine': sine,
263
+ 'tanh_square': tanh_square,
264
+ 'mod_sigmoid': mod_sigmoid,
265
+ 'linear': lambda x: x,
266
+ 'quartic': quartic,
267
+ 'square_quartic': square_quartic,
268
+ 'cubic_quadratic': cubic_quadratic,
269
+ 'exp_cubic': exp_cubic,
270
+ 'sine_square': sine_square,
271
+ 'logarithmic': logarithmic,
272
+ 'scaled_cubic': lambda x: scaled_cubic(x, 1.0),
273
+ 'sine_offset': lambda x: sine_offset(x, 1.0),
274
+ 'spiral': spiral_activation,
275
+ 'circular': circular_activation
276
+ }
277
+
278
+ try:
279
+ valid_activations = [act for act in activation_list if act in activation_functions]
280
+
281
+ activation_outputs = cp.stack([activation_functions[act](origin_input)
282
+ for act in valid_activations])
283
+
284
+ result = Input + cp.sum(activation_outputs, axis=0)
285
+
286
+ return result
287
+
288
+ except Exception as e:
289
+ warnings.warn(f"Error in activation processing: {str(e)}", RuntimeWarning)
290
+ return Input
@@ -258,7 +258,7 @@ def predict_model_ssd(Input, model_name, model_path='', dtype=np.float32):
258
258
  ndarray: Output from the model.
259
259
  """
260
260
 
261
- from .plan import feed_forward
261
+ from .activation_functions import apply_activation
262
262
  from .data_operations import standard_scaler
263
263
 
264
264
  model = load_model(model_name, model_path)
@@ -269,12 +269,12 @@ def predict_model_ssd(Input, model_name, model_path='', dtype=np.float32):
269
269
 
270
270
  Input = standard_scaler(None, Input, scaler_params, dtype=dtype)
271
271
 
272
- neural_layer = Input
273
- neural_layer = np.array(neural_layer, copy=False)
274
- neural_layer = neural_layer.ravel()
272
+ Input = np.array(Input, dtype=dtype, copy=False)
273
+ Input = Input.ravel()
275
274
 
276
275
  try:
277
- neural_layer = feed_forward(neural_layer, np.copy(W.astype(dtype, copy=False)), is_training=False, Class='?', activation_potentiation=activation_potentiation)
276
+ Input = apply_activation(Input, activation_potentiation)
277
+ neural_layer = Input @ W.T
278
278
  return neural_layer
279
279
  except:
280
280
  print(Fore.RED + "ERROR: Unexpected Output or wrong model parameters from: predict_model_ssd." + Style.RESET_ALL)
@@ -304,7 +304,7 @@ def reverse_predict_model_ssd(output, model_name, model_path='', dtype=np.float3
304
304
  W = model[get_weights()]
305
305
 
306
306
  try:
307
- Input = np.dot(output.astype(dtype, copy=False), np.copy(W.astype(dtype, copy=False)))
307
+ Input = W.T @ output
308
308
  return Input
309
309
  except:
310
310
  print(Fore.RED + "ERROR: Unexpected Output or wrong model parameters from: reverse_predict_model_ssd." + Style.RESET_ALL)
@@ -334,18 +334,18 @@ def predict_model_ram(Input, W, scaler_params=None, activation_potentiation=['li
334
334
  ndarray: Output from the model.
335
335
  """
336
336
 
337
- from data_operations import standard_scaler
338
- from plan import feed_forward
337
+ from .data_operations import standard_scaler
338
+ from .activation_functions import apply_activation
339
339
 
340
340
  Input = standard_scaler(None, Input, scaler_params, dtype=dtype)
341
341
 
342
+ Input = np.array(Input, dtype=dtype, copy=False)
343
+ Input = Input.ravel()
344
+
342
345
  try:
343
346
 
344
- neural_layer = Input
345
- neural_layer = np.array(neural_layer, copy=False)
346
- neural_layer = neural_layer.ravel()
347
-
348
- neural_layer = feed_forward(neural_layer, np.copy(W.astype(dtype, copy=False)), is_training=False, Class='?', activation_potentiation=activation_potentiation)
347
+ Input = apply_activation(Input, activation_potentiation)
348
+ neural_layer = Input @ W.T
349
349
 
350
350
  return neural_layer
351
351
 
@@ -371,7 +371,7 @@ def reverse_predict_model_ram(output, W, dtype=np.float32):
371
371
  """
372
372
 
373
373
  try:
374
- Input = np.dot(output.astype(dtype, copy=False), np.copy(W.astype(dtype, copy=False)))
374
+ Input = W.T @ output
375
375
  return Input
376
376
 
377
377
  except: