pyerualjetwork 4.2.9b7__py3-none-any.whl → 4.3.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (28) hide show
  1. {pyerualjetwork-4.2.9b7.dist-info → pyerualjetwork-4.3.0.1.dist-info}/METADATA +2 -1
  2. pyerualjetwork-4.3.0.1.dist-info/RECORD +24 -0
  3. pyerualjetwork-4.3.0.1.dist-info/top_level.txt +1 -0
  4. {pyerualjetwork → pyerualjetwork-jetstorm}/__init__.py +1 -1
  5. pyerualjetwork-jetstorm/activation_functions.py +291 -0
  6. pyerualjetwork-jetstorm/activation_functions_cuda.py +290 -0
  7. {pyerualjetwork → pyerualjetwork-jetstorm}/data_operations.py +2 -3
  8. {pyerualjetwork → pyerualjetwork-jetstorm}/model_operations.py +14 -14
  9. {pyerualjetwork → pyerualjetwork-jetstorm}/model_operations_cuda.py +16 -17
  10. {pyerualjetwork → pyerualjetwork-jetstorm}/plan.py +46 -248
  11. {pyerualjetwork → pyerualjetwork-jetstorm}/plan_cuda.py +44 -263
  12. {pyerualjetwork → pyerualjetwork-jetstorm}/planeat.py +14 -47
  13. {pyerualjetwork → pyerualjetwork-jetstorm}/planeat_cuda.py +11 -48
  14. pyerualjetwork/activation_functions.py +0 -343
  15. pyerualjetwork/activation_functions_cuda.py +0 -341
  16. pyerualjetwork-4.2.9b7.dist-info/RECORD +0 -24
  17. pyerualjetwork-4.2.9b7.dist-info/top_level.txt +0 -1
  18. {pyerualjetwork-4.2.9b7.dist-info → pyerualjetwork-4.3.0.1.dist-info}/WHEEL +0 -0
  19. {pyerualjetwork → pyerualjetwork-jetstorm}/data_operations_cuda.py +0 -0
  20. {pyerualjetwork → pyerualjetwork-jetstorm}/help.py +0 -0
  21. {pyerualjetwork → pyerualjetwork-jetstorm}/loss_functions.py +0 -0
  22. {pyerualjetwork → pyerualjetwork-jetstorm}/loss_functions_cuda.py +0 -0
  23. {pyerualjetwork → pyerualjetwork-jetstorm}/memory_operations.py +0 -0
  24. {pyerualjetwork → pyerualjetwork-jetstorm}/metrics.py +0 -0
  25. {pyerualjetwork → pyerualjetwork-jetstorm}/metrics_cuda.py +0 -0
  26. {pyerualjetwork → pyerualjetwork-jetstorm}/ui.py +0 -0
  27. {pyerualjetwork → pyerualjetwork-jetstorm}/visualizations.py +0 -0
  28. {pyerualjetwork → pyerualjetwork-jetstorm}/visualizations_cuda.py +0 -0
@@ -16,11 +16,9 @@ import cupy as cp
16
16
  import numpy as np
17
17
  import random
18
18
  import math
19
- import copy
20
19
 
21
20
 
22
21
  ### LIBRARY IMPORTS ###
23
- from .plan_cuda import feed_forward
24
22
  from .data_operations_cuda import normalization
25
23
  from .ui import loading_bars, initialize_loading_bar
26
24
  from .activation_functions_cuda import apply_activation, all_activations
@@ -279,7 +277,7 @@ def evolver(weights,
279
277
 
280
278
  good_activations = list(activation_potentiations[slice_center:])
281
279
  bad_activations = list(activation_potentiations[:slice_center])
282
- best_activations = copy.deepcopy(good_activations[-1])
280
+ best_activations = good_activations[-1].copy() if isinstance(good_activations[-1], list) else good_activations[-1]
283
281
 
284
282
 
285
283
  ### PLANEAT IS APPLIED ACCORDING TO THE SPECIFIED POLICY, STRATEGY, AND PROBABILITY CONFIGURATION:
@@ -293,10 +291,10 @@ def evolver(weights,
293
291
  epsilon = cp.finfo(float).eps
294
292
 
295
293
  child_W = cp.copy(bad_weights)
296
- child_act = copy.deepcopy(bad_activations)
294
+ child_act = bad_activations.copy()
297
295
 
298
296
  mutated_W = cp.copy(bad_weights)
299
- mutated_act = copy.deepcopy(bad_activations)
297
+ mutated_act = bad_activations.copy()
300
298
 
301
299
 
302
300
  for i in range(len(bad_weights)):
@@ -400,7 +398,7 @@ def evolver(weights,
400
398
  return weights, activation_potentiations
401
399
 
402
400
 
403
- def evaluate(x_population, weights, activation_potentiations, rl_mode=False, dtype=cp.float32):
401
+ def evaluate(x_population, weights, activation_potentiations):
404
402
  """
405
403
  Evaluates the performance of a population of genomes, applying different activation functions
406
404
  and weights depending on whether reinforcement learning mode is enabled or not.
@@ -415,64 +413,29 @@ def evaluate(x_population, weights, activation_potentiations, rl_mode=False, dty
415
413
  activation_potentiations (list or str): A list where each entry represents an activation function
416
414
  or a potentiation strategy applied to each genome. If only one
417
415
  activation function is used, this can be a single string.
418
-
419
- rl_mode (bool, optional): If True, reinforcement learning mode is activated, this accepts x_population is a single genome. (Also weights and activation_potentations a single genomes part.)
420
- Default is False.
421
-
422
-
423
- dtype (cupy.dtype): Data type for the arrays. np.float32 by default. Example: cp.float64 or cp.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
424
-
425
416
  Returns:
426
417
  list: A list of outputs corresponding to each genome in the population after applying the respective
427
418
  activation function and weights.
428
419
 
429
- Notes:
430
- - If `rl_mode` is True:
431
- - Accepts x_population is a single genom
432
- - The inputs are flattened, and the activation function is applied across the single genom.
433
-
434
- - If `rl_mode` is False:
435
- - Accepts x_population is a list of genomes
436
- - Each genome is processed individually, and the results are stored in the `outputs` list.
437
-
438
- - `feed_forward()` function is the core function that processes the input with the given weights and activation function.
439
-
440
420
  Example:
441
421
  ```python
442
- outputs = evaluate(x_population, weights, activation_potentiations, rl_mode=False)
422
+ outputs = evaluate(x_population, weights, activation_potentiations)
443
423
  ```
444
424
 
445
425
  - The function returns a list of outputs after processing the population, where each element corresponds to
446
426
  the output for each genome in `x_population`.
447
427
  """
448
-
449
- ### IF RL_MODE IS TRUE, A SINGLE GENOME IS ASSUMED AS INPUT, A FEEDFORWARD PREDICTION IS MADE, AND THE OUTPUT(NPARRAY) IS RETURNED:
450
-
451
- ### IF RL_MODE IS FALSE, PREDICTIONS ARE MADE FOR ALL GENOMES IN THE GROUP USING THEIR CORRESPONDING INDEXED INPUTS AND DATA.
452
428
  ### THE OUTPUTS ARE RETURNED AS A PYTHON LIST, WHERE EACH GENOME'S OUTPUT MATCHES ITS INDEX:
453
429
 
454
- if rl_mode == True:
455
- Input = cp.array(x_population, dtype=dtype, copy=False)
456
- Input = Input.ravel()
457
-
458
- if isinstance(activation_potentiations, str):
459
- activation_potentiations = [activation_potentiations]
460
-
461
- outputs = feed_forward(Input=Input, is_training=False, activation_potentiation=activation_potentiations, w=weights)
462
-
430
+ if isinstance(activation_potentiations, str):
431
+ activation_potentiations = [activation_potentiations]
463
432
  else:
464
- outputs = [0] * len(x_population)
465
- for i, genome in enumerate(x_population):
466
-
467
- Input = cp.array(genome)
468
- Input = Input.ravel()
469
-
470
- if isinstance(activation_potentiations[i], str):
471
- activation_potentiations[i] = [activation_potentiations[i]]
433
+ activation_potentiations = [item if isinstance(item, list) else [item] for item in activation_potentiations]
472
434
 
473
- outputs[i] = feed_forward(Input=Input, is_training=False, activation_potentiation=activation_potentiations[i], w=weights[i])
435
+ x_population = apply_activation(x_population, activation_potentiations)
436
+ result = x_population @ weights.T
474
437
 
475
- return outputs
438
+ return result
476
439
 
477
440
 
478
441
  def cross_over(first_parent_W,
@@ -1,343 +0,0 @@
1
- import numpy as np
2
- from scipy.special import expit, softmax
3
- import warnings
4
-
5
-
6
- # ACTIVATION FUNCTIONS -----
7
-
8
- def all_activations():
9
-
10
- activations_list = ['linear', 'sigmoid', 'relu', 'tanh', 'circular', 'spiral', 'swish', 'sin_plus', 'mod_circular', 'tanh_circular', 'leaky_relu', 'softplus', 'elu', 'gelu', 'selu', 'sinakt', 'p_squared', 'sglu', 'dlrelu', 'exsig', 'acos', 'gla', 'srelu', 'qelu', 'isra', 'waveakt', 'arctan', 'bent_identity', 'sech', 'softsign', 'pwl', 'cubic', 'gaussian', 'sine', 'tanh_square', 'mod_sigmoid', 'quartic', 'square_quartic', 'cubic_quadratic', 'exp_cubic', 'sine_square', 'logarithmic', 'scaled_cubic', 'sine_offset']
11
-
12
- return activations_list
13
-
14
- def spiral_activation(x):
15
-
16
- r = np.sqrt(np.sum(x**2))
17
-
18
- theta = np.arctan2(x[1:], x[:-1])
19
-
20
- spiral_x = r * np.cos(theta + r)
21
- spiral_y = r * np.sin(theta + r)
22
-
23
-
24
- spiral_output = np.concatenate(([spiral_x[0]], spiral_y))
25
-
26
- return spiral_output
27
-
28
-
29
- def Softmax(
30
- x # num: Input data to be transformed using softmax function.
31
- ):
32
- """
33
- Applies the softmax function to the input data.
34
-
35
- Args:
36
- (num): Input data to be transformed using softmax function.
37
-
38
- Returns:
39
- (num): Transformed data after applying softmax function.
40
- """
41
-
42
- return softmax(x)
43
-
44
-
45
- def Sigmoid(
46
- x # num: Input data to be transformed using sigmoid function.
47
- ):
48
- """
49
- Applies the sigmoid function to the input data.
50
-
51
- Args:
52
- (num): Input data to be transformed using sigmoid function.
53
-
54
- Returns:
55
- (num): Transformed data after applying sigmoid function.
56
- """
57
- return expit(x)
58
-
59
-
60
- def Relu(
61
- x # num: Input data to be transformed using ReLU function.
62
- ):
63
- """
64
- Applies the Rectified Linear Unit (ReLU) function to the input data.
65
-
66
- Args:
67
- (num): Input data to be transformed using ReLU function.
68
-
69
- Returns:
70
- (num): Transformed data after applying ReLU function.
71
- """
72
-
73
- return np.maximum(0, x)
74
-
75
-
76
- def tanh(x):
77
- return np.tanh(x)
78
-
79
- def swish(x):
80
- return x * (1 / (1 + np.exp(-x)))
81
-
82
- def sin_plus(x):
83
- return (np.sin(x) + 1) / 2
84
-
85
- def modular_circular_activation(x, period=2*np.pi):
86
- return np.mod(x, period) / period
87
-
88
- def tanh_circular_activation(x):
89
- return (np.tanh(x) + 1) / 2
90
-
91
- def leaky_relu(x, alpha=0.01):
92
- return np.where(x > 0, x, alpha * x)
93
-
94
- def softplus(x):
95
- return np.log(1 + np.exp(x))
96
-
97
- def elu(x, alpha=1.0):
98
- return np.where(x > 0, x, alpha * (np.exp(x) - 1))
99
-
100
- def gelu(x):
101
- return 0.5 * x * (1 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))
102
-
103
- def selu(x, lambda_=1.0507, alpha=1.6733):
104
- return lambda_ * np.where(x > 0, x, alpha * (np.exp(x) - 1))
105
-
106
- def sinakt(x):
107
- return np.sin(x) + np.cos(x)
108
-
109
- def p_squared(x, alpha=1.0, beta=0.0):
110
- return alpha * x**2 + beta * x
111
-
112
- def sglu(x, alpha=1.0):
113
- return softmax(alpha * x) * x
114
-
115
- # 4. Double Leaky ReLU (DLReLU)
116
- def dlrelu(x):
117
- return np.maximum(0.01 * x, x) + np.minimum(0.01 * x, 0.1 * x)
118
-
119
- # 5. Exponential Sigmoid (ExSig)
120
- def exsig(x):
121
- return 1 / (1 + np.exp(-x**2))
122
-
123
- # 6. Adaptive Cosine Activation (ACos)
124
- def acos(x, alpha=1.0, beta=0.0):
125
- return np.cos(alpha * x + beta)
126
-
127
- # 7. Gaussian-like Activation (GLA)
128
- def gla(x, alpha=1.0, mu=0.0):
129
- return np.exp(-alpha * (x - mu)**2)
130
-
131
- # 8. Swish ReLU (SReLU)
132
- def srelu(x):
133
- return x * (1 / (1 + np.exp(-x))) + np.maximum(0, x)
134
-
135
- # 9. Quadratic Exponential Linear Unit (QELU)
136
- def qelu(x):
137
- return x**2 * np.exp(x) - 1
138
-
139
- # 10. Inverse Square Root Activation (ISRA)
140
- def isra(x):
141
- return x / np.sqrt(np.abs(x) + 1)
142
-
143
- def waveakt(x, alpha=1.0, beta=2.0, gamma=3.0):
144
- return np.sin(alpha * x) * np.cos(beta * x) * np.sin(gamma * x)
145
-
146
- def arctan(x):
147
- return np.arctan(x)
148
-
149
- def bent_identity(x):
150
- return (np.sqrt(x**2 + 1) - 1) / 2 + x
151
-
152
- def circular_activation(x, scale=2.0, frequency=1.0, shift=0.0):
153
-
154
- n_features = x.shape[0]
155
-
156
- circular_output = np.zeros_like(x)
157
-
158
- for i in range(n_features):
159
-
160
- r = np.sqrt(np.sum(x**2))
161
- theta = 2 * np.pi * (i / n_features) + shift
162
-
163
- circular_x = r * np.cos(theta + frequency * r) * scale
164
- circular_y = r * np.sin(theta + frequency * r) * scale
165
-
166
- if i % 2 == 0:
167
- circular_output[i] = circular_x
168
- else:
169
- circular_output[i] = circular_y
170
-
171
- return circular_output
172
-
173
- def sech(x):
174
- return 2 / (np.exp(x) + np.exp(-x))
175
-
176
- def softsign(x):
177
- return x / (1 + np.abs(x))
178
-
179
- def pwl(x, alpha=0.5, beta=1.5):
180
- return np.where(x <= 0, alpha * x, beta * x)
181
-
182
- def cubic(x):
183
- return x**3
184
-
185
- def gaussian(x, alpha=1.0, mu=0.0):
186
- return np.exp(-alpha * (x - mu)**2)
187
-
188
- def sine(x, alpha=1.0):
189
- return np.sin(alpha * x)
190
-
191
- def tanh_square(x):
192
- return np.tanh(x)**2
193
-
194
- def mod_sigmoid(x, alpha=1.0, beta=0.0):
195
- return 1 / (1 + np.exp(-alpha * x + beta))
196
-
197
- def quartic(x):
198
- return x**4
199
-
200
- def square_quartic(x):
201
- return (x**2)**2
202
-
203
- def cubic_quadratic(x):
204
- return x**3 * (x**2)
205
-
206
- def exp_cubic(x):
207
- return np.exp(x**3)
208
-
209
- def sine_square(x):
210
- return np.sin(x)**2
211
-
212
- def logarithmic(x):
213
- return np.log(x**2 + 1)
214
-
215
- def scaled_cubic(x, alpha=1.0):
216
- return alpha * x**3
217
-
218
- def sine_offset(x, beta=0.0):
219
- return np.sin(x + beta)
220
-
221
-
222
- def safe_add(current_sum, new_value):
223
- try:
224
- return current_sum + new_value
225
- except OverflowError:
226
- return np.array(current_sum) + np.array(new_value)
227
-
228
-
229
- def apply_activation(Input, activation_list):
230
- """
231
- Applies a sequence of activation functions to the input.
232
-
233
- Args:
234
- Input (numpy.ndarray): The input to apply activations to.
235
- activation_list (list): A list of activation function names to apply.
236
-
237
- Returns:
238
- numpy.ndarray: The input after all activations have been applied.
239
- """
240
-
241
- origin_input = np.copy(Input)
242
-
243
- for i in range(len(activation_list)):
244
- try:
245
- if activation_list[i] == 'sigmoid':
246
- Input = safe_add(Input, Sigmoid(origin_input))
247
- elif activation_list[i] == 'swish':
248
- Input = safe_add(Input, swish(origin_input))
249
- elif activation_list[i] == 'mod_circular':
250
- Input = safe_add(Input, modular_circular_activation(origin_input))
251
- elif activation_list[i] == 'tanh_circular':
252
- Input = safe_add(Input, tanh_circular_activation(origin_input))
253
- elif activation_list[i] == 'leaky_relu':
254
- Input = safe_add(Input, leaky_relu(origin_input))
255
- elif activation_list[i] == 'relu':
256
- Input = safe_add(Input, Relu(origin_input))
257
- elif activation_list[i] == 'softplus':
258
- Input = safe_add(Input, softplus(origin_input))
259
- elif activation_list[i] == 'elu':
260
- Input = safe_add(Input, elu(origin_input))
261
- elif activation_list[i] == 'gelu':
262
- Input = safe_add(Input, gelu(origin_input))
263
- elif activation_list[i] == 'selu':
264
- Input = safe_add(Input, selu(origin_input))
265
- elif activation_list[i] == 'tanh':
266
- Input = safe_add(Input, tanh(origin_input))
267
- elif activation_list[i] == 'sinakt':
268
- Input = safe_add(Input, sinakt(origin_input))
269
- elif activation_list[i] == 'p_squared':
270
- Input = safe_add(Input, p_squared(origin_input))
271
- elif activation_list[i] == 'sglu':
272
- Input = safe_add(Input, sglu(origin_input, alpha=1.0))
273
- elif activation_list[i] == 'dlrelu':
274
- Input = safe_add(Input, dlrelu(origin_input))
275
- elif activation_list[i] == 'exsig':
276
- Input = safe_add(Input, exsig(origin_input))
277
- elif activation_list[i] == 'sin_plus':
278
- Input = safe_add(Input, sin_plus(origin_input))
279
- elif activation_list[i] == 'acos':
280
- Input = safe_add(Input, acos(origin_input, alpha=1.0, beta=0.0))
281
- elif activation_list[i] == 'gla':
282
- Input = safe_add(Input, gla(origin_input, alpha=1.0, mu=0.0))
283
- elif activation_list[i] == 'srelu':
284
- Input = safe_add(Input, srelu(origin_input))
285
- elif activation_list[i] == 'qelu':
286
- Input = safe_add(Input, qelu(origin_input))
287
- elif activation_list[i] == 'isra':
288
- Input = safe_add(Input, isra(origin_input))
289
- elif activation_list[i] == 'waveakt':
290
- Input = safe_add(Input, waveakt(origin_input))
291
- elif activation_list[i] == 'arctan':
292
- Input = safe_add(Input, arctan(origin_input))
293
- elif activation_list[i] == 'bent_identity':
294
- Input = safe_add(Input, bent_identity(origin_input))
295
- elif activation_list[i] == 'sech':
296
- Input = safe_add(Input, sech(origin_input))
297
- elif activation_list[i] == 'softsign':
298
- Input = safe_add(Input, softsign(origin_input))
299
- elif activation_list[i] == 'pwl':
300
- Input = safe_add(Input, pwl(origin_input))
301
- elif activation_list[i] == 'cubic':
302
- Input = safe_add(Input, cubic(origin_input))
303
- elif activation_list[i] == 'gaussian':
304
- Input = safe_add(Input, gaussian(origin_input))
305
- elif activation_list[i] == 'sine':
306
- Input = safe_add(Input, sine(origin_input))
307
- elif activation_list[i] == 'tanh_square':
308
- Input = safe_add(Input, tanh_square(origin_input))
309
- elif activation_list[i] == 'mod_sigmoid':
310
- Input = safe_add(Input, mod_sigmoid(origin_input))
311
- elif activation_list[i] == 'linear':
312
- Input = safe_add(Input, origin_input)
313
- elif activation_list[i] == 'quartic':
314
- Input = safe_add(Input, quartic(origin_input))
315
- elif activation_list[i] == 'square_quartic':
316
- Input = safe_add(Input, square_quartic(origin_input))
317
- elif activation_list[i] == 'cubic_quadratic':
318
- Input = safe_add(Input, cubic_quadratic(origin_input))
319
- elif activation_list[i] == 'exp_cubic':
320
- Input = safe_add(Input, exp_cubic(origin_input))
321
- elif activation_list[i] == 'sine_square':
322
- Input = safe_add(Input, sine_square(origin_input))
323
- elif activation_list[i] == 'logarithmic':
324
- Input = safe_add(Input, logarithmic(origin_input))
325
- elif activation_list[i] == 'scaled_cubic':
326
- Input = safe_add(Input, scaled_cubic(origin_input, 1.0))
327
- elif activation_list[i] == 'sine_offset':
328
- Input = safe_add(Input, sine_offset(origin_input, 1.0))
329
- elif activation_list[i] == 'spiral':
330
- Input = safe_add(Input, spiral_activation(origin_input))
331
- elif activation_list[i] == 'circular':
332
- Input = safe_add(Input, circular_activation(origin_input))
333
-
334
-
335
- except Exception as e:
336
- warnings.warn(f"Error in activation {activation_list[i]}: {str(e)}", RuntimeWarning)
337
- if not isinstance(Input, np.ndarray):
338
- Input = np.array(Input)
339
- if not isinstance(origin_input, np.ndarray):
340
- origin_input = np.array(origin_input)
341
- continue
342
-
343
- return Input