pyerualjetwork 4.2.9b6__py3-none-any.whl → 4.2.9b7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/activation_functions.py +2 -0
- pyerualjetwork/activation_functions_cuda.py +4 -4
- pyerualjetwork/plan_cuda.py +3 -4
- {pyerualjetwork-4.2.9b6.dist-info → pyerualjetwork-4.2.9b7.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.2.9b6.dist-info → pyerualjetwork-4.2.9b7.dist-info}/RECORD +8 -8
- {pyerualjetwork-4.2.9b6.dist-info → pyerualjetwork-4.2.9b7.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.2.9b6.dist-info → pyerualjetwork-4.2.9b7.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.2.
|
1
|
+
__version__ = "4.2.9b7"
|
2
2
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
3
3
|
|
4
4
|
def print_version(__version__):
|
@@ -218,12 +218,14 @@ def scaled_cubic(x, alpha=1.0):
|
|
218
218
|
def sine_offset(x, beta=0.0):
|
219
219
|
return np.sin(x + beta)
|
220
220
|
|
221
|
+
|
221
222
|
def safe_add(current_sum, new_value):
|
222
223
|
try:
|
223
224
|
return current_sum + new_value
|
224
225
|
except OverflowError:
|
225
226
|
return np.array(current_sum) + np.array(new_value)
|
226
227
|
|
228
|
+
|
227
229
|
def apply_activation(Input, activation_list):
|
228
230
|
"""
|
229
231
|
Applies a sequence of activation functions to the input.
|
@@ -218,23 +218,23 @@ def sine_offset(x, beta=0.0):
|
|
218
218
|
return cp.sin(x + beta)
|
219
219
|
|
220
220
|
|
221
|
-
|
222
221
|
def safe_add(current_sum, new_value):
|
223
222
|
try:
|
224
223
|
return current_sum + new_value
|
225
224
|
except OverflowError:
|
226
225
|
return cp.array(current_sum) + cp.array(new_value)
|
227
226
|
|
227
|
+
|
228
228
|
def apply_activation(Input, activation_list):
|
229
229
|
"""
|
230
230
|
Applies a sequence of activation functions to the input.
|
231
231
|
|
232
232
|
Args:
|
233
|
-
Input (
|
233
|
+
Input (cupy.ndarray): The input to apply activations to.
|
234
234
|
activation_list (list): A list of activation function names to apply.
|
235
235
|
|
236
236
|
Returns:
|
237
|
-
|
237
|
+
cupy.ndarray: The input after all activations have been applied.
|
238
238
|
"""
|
239
239
|
|
240
240
|
origin_input = cp.copy(Input)
|
@@ -308,7 +308,7 @@ def apply_activation(Input, activation_list):
|
|
308
308
|
elif activation_list[i] == 'mod_sigmoid':
|
309
309
|
Input = safe_add(Input, mod_sigmoid(origin_input))
|
310
310
|
elif activation_list[i] == 'linear':
|
311
|
-
Input
|
311
|
+
Input += origin_input
|
312
312
|
elif activation_list[i] == 'quartic':
|
313
313
|
Input = safe_add(Input, quartic(origin_input))
|
314
314
|
elif activation_list[i] == 'square_quartic':
|
pyerualjetwork/plan_cuda.py
CHANGED
@@ -620,19 +620,18 @@ def evaluate(
|
|
620
620
|
loading_bar = initialize_loading_bar(total=len(x_test), ncols=64, desc='Testing', bar_format=bar_format_normal)
|
621
621
|
|
622
622
|
for inpIndex in range(len(x_test)):
|
623
|
-
Input = x_test[inpIndex].ravel()
|
623
|
+
Input = transfer_to_gpu(x_test[inpIndex], dtype=dtype).ravel()
|
624
624
|
neural_layer = Input
|
625
625
|
|
626
|
-
neural_layer = feed_forward(neural_layer, W, is_training=False, Class='?', activation_potentiation=activation_potentiation)
|
626
|
+
neural_layer = feed_forward(neural_layer, cp.copy(W), is_training=False, Class='?', activation_potentiation=activation_potentiation)
|
627
627
|
|
628
628
|
predict_probabilitys[inpIndex] = Softmax(neural_layer)
|
629
629
|
|
630
|
-
RealOutput =
|
630
|
+
RealOutput = decode_one_hot(transfer_to_gpu(y_test[inpIndex], dtype=y_test[inpIndex].dtype))
|
631
631
|
real_classes[inpIndex] = RealOutput
|
632
632
|
PredictedOutput = cp.argmax(neural_layer)
|
633
633
|
predict_classes[inpIndex] = PredictedOutput
|
634
634
|
|
635
|
-
|
636
635
|
if RealOutput == PredictedOutput:
|
637
636
|
true_predict += 1
|
638
637
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.2.
|
3
|
+
Version: 4.2.9b7
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,6 +1,6 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256
|
2
|
-
pyerualjetwork/activation_functions.py,sha256=
|
3
|
-
pyerualjetwork/activation_functions_cuda.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=-UIV7CqxZoriiu5trhAYI1q_ztU6L6nky-nOFm1p9l0,641
|
2
|
+
pyerualjetwork/activation_functions.py,sha256=eLEesmMgDvkI1TqaLTpqtOgTaLbHEAyw-D57KIKd9G4,11775
|
3
|
+
pyerualjetwork/activation_functions_cuda.py,sha256=ahUOF47g073epWrIrv4kGBqQjif1xcw3qfEhvLJEDp4,11789
|
4
4
|
pyerualjetwork/data_operations.py,sha256=pb5CqJ0Th6fCjTNMCtqQMiwH3KezTxAijacglsKUxmY,14730
|
5
5
|
pyerualjetwork/data_operations_cuda.py,sha256=UpoJoFhIwTU4xg9dVuLAxLAT4CkRaGsxvtJG9j1xrNo,17629
|
6
6
|
pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
@@ -12,13 +12,13 @@ pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYg
|
|
12
12
|
pyerualjetwork/model_operations.py,sha256=RKqnh7-MByFosxqme4q4jC1lOndX26O-OVXYV6ZxoEE,12965
|
13
13
|
pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
|
14
14
|
pyerualjetwork/plan.py,sha256=UzCTFCA9cTv9ITCtsqfJ1g02rCMyescoIV6j1amvYGw,32134
|
15
|
-
pyerualjetwork/plan_cuda.py,sha256=
|
15
|
+
pyerualjetwork/plan_cuda.py,sha256=hpXZl3h7B1qAVYW-gZebwKMZd4-ftAZ-u05teOJjsno,33525
|
16
16
|
pyerualjetwork/planeat.py,sha256=t6qyuMB2c5n8lsAJooEpShzEnw2GvepBI0bpLMx0DUI,39440
|
17
17
|
pyerualjetwork/planeat_cuda.py,sha256=UBdbAk87M5zEZzZlRBeOzW-q0Sy8c_XWl4zdrtDnyIs,39499
|
18
18
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
19
|
pyerualjetwork/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
|
20
20
|
pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
21
|
-
pyerualjetwork-4.2.
|
22
|
-
pyerualjetwork-4.2.
|
23
|
-
pyerualjetwork-4.2.
|
24
|
-
pyerualjetwork-4.2.
|
21
|
+
pyerualjetwork-4.2.9b7.dist-info/METADATA,sha256=hqgQTjNLjoljou-abs6HJwbCoeHlnrkZTcmU91-rB7c,7454
|
22
|
+
pyerualjetwork-4.2.9b7.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
23
|
+
pyerualjetwork-4.2.9b7.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
24
|
+
pyerualjetwork-4.2.9b7.dist-info/RECORD,,
|
File without changes
|
File without changes
|