pyerualjetwork 4.2.2b9__py3-none-any.whl → 4.2.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/plan.py +4 -4
- pyerualjetwork/plan_cuda.py +8 -8
- pyerualjetwork/visualizations.py +4 -4
- pyerualjetwork/visualizations_cuda.py +4 -5
- {pyerualjetwork-4.2.2b9.dist-info → pyerualjetwork-4.2.3.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.2.2b9.dist-info → pyerualjetwork-4.2.3.dist-info}/RECORD +9 -9
- {pyerualjetwork-4.2.2b9.dist-info → pyerualjetwork-4.2.3.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.2.2b9.dist-info → pyerualjetwork-4.2.3.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
__version__ = "4.2.
|
1
|
+
__version__ = "4.2.3"
|
2
2
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
3
3
|
|
4
4
|
def print_version(__version__):
|
pyerualjetwork/plan.py
CHANGED
@@ -584,12 +584,12 @@ def evaluate(
|
|
584
584
|
if y_test.dtype != np.uint32:
|
585
585
|
y_test = np.array(y_test, copy=False).astype(np.uint32, copy=False)
|
586
586
|
|
587
|
-
predict_probabilitys = np.empty((len(x_test), W.shape[0]), dtype=
|
588
|
-
real_classes = np.empty(len(x_test), dtype=
|
589
|
-
predict_classes = np.empty(len(x_test), dtype=
|
587
|
+
predict_probabilitys = np.empty((len(x_test), W.shape[0]), dtype=dtype)
|
588
|
+
real_classes = np.empty(len(x_test), dtype=y_test.dtype)
|
589
|
+
predict_classes = np.empty(len(x_test), dtype=y_test.dtype)
|
590
590
|
|
591
591
|
true_predict = 0
|
592
|
-
acc_list = np.empty(len(x_test), dtype=
|
592
|
+
acc_list = np.empty(len(x_test), dtype=dtype)
|
593
593
|
|
594
594
|
if loading_bar_status:
|
595
595
|
loading_bar = initialize_loading_bar(total=len(x_test), ncols=64, desc='Testing', bar_format=bar_format_normal)
|
pyerualjetwork/plan_cuda.py
CHANGED
@@ -299,9 +299,9 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
|
|
299
299
|
|
300
300
|
# Initialize progress bar
|
301
301
|
if batch_size == 1:
|
302
|
-
ncols =
|
302
|
+
ncols = 76
|
303
303
|
else:
|
304
|
-
ncols =
|
304
|
+
ncols = 89
|
305
305
|
|
306
306
|
# Initialize variables
|
307
307
|
best_acc = 0
|
@@ -323,8 +323,8 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
|
|
323
323
|
act_pop[0] = start_this_act
|
324
324
|
|
325
325
|
else:
|
326
|
-
weight_pop = [
|
327
|
-
act_pop = [
|
326
|
+
weight_pop = []
|
327
|
+
act_pop = []
|
328
328
|
|
329
329
|
for i in range(gen):
|
330
330
|
postfix_dict["Gen"] = str(i+1) + '/' + str(gen)
|
@@ -382,9 +382,9 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
|
|
382
382
|
final_activations = [final_activations[0]] if len(set(final_activations)) == 1 else final_activations # removing if all same
|
383
383
|
|
384
384
|
if batch_size == 1:
|
385
|
-
postfix_dict[f"{data} Accuracy"] = best_acc
|
385
|
+
postfix_dict[f"{data} Accuracy"] = cp.round(best_acc, 3)
|
386
386
|
else:
|
387
|
-
postfix_dict[f"{data} Batch Accuracy"] =
|
387
|
+
postfix_dict[f"{data} Batch Accuracy"] = cp.round(best_acc, 3)
|
388
388
|
progress.set_postfix(postfix_dict)
|
389
389
|
|
390
390
|
if show_current_activations:
|
@@ -396,10 +396,10 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
|
|
396
396
|
train_loss = binary_crossentropy(y_true_batch=transfer_to_gpu(y_train_batch, dtype=y_train_batch.dtype), y_pred_batch=model[get_preds_softmax()])
|
397
397
|
|
398
398
|
if batch_size == 1:
|
399
|
-
postfix_dict[f"{data} Loss"] = train_loss
|
399
|
+
postfix_dict[f"{data} Loss"] = cp.round(train_loss, 3)
|
400
400
|
best_loss = train_loss
|
401
401
|
else:
|
402
|
-
postfix_dict[f"{data} Batch Loss"] = train_loss
|
402
|
+
postfix_dict[f"{data} Batch Loss"] = cp.round(train_loss, 3)
|
403
403
|
progress.set_postfix(postfix_dict)
|
404
404
|
best_loss = train_loss
|
405
405
|
|
pyerualjetwork/visualizations.py
CHANGED
@@ -321,7 +321,7 @@ def draw_activations(x_train, activation):
|
|
321
321
|
|
322
322
|
try: return result
|
323
323
|
except:
|
324
|
-
print('
|
324
|
+
print('\rWARNING: error in drawing some activation.', end='')
|
325
325
|
return x_train
|
326
326
|
|
327
327
|
def plot_evaluate(x_test, y_test, y_preds, acc_list, W, activation_potentiation):
|
@@ -753,12 +753,12 @@ def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_ac
|
|
753
753
|
|
754
754
|
# Loss plot
|
755
755
|
art1 = hist['ax'][0].plot(depth_list, loss_list, color='r', markersize=6, linewidth=2)
|
756
|
-
hist['ax'][0].set_title('
|
756
|
+
hist['ax'][0].set_title('Train Loss Over Gen')
|
757
757
|
hist['artist1'].append(art1)
|
758
758
|
|
759
759
|
# Accuracy plot
|
760
760
|
art2 = hist['ax'][1].plot(depth_list, best_acc_per_depth_list, color='g', markersize=6, linewidth=2)
|
761
|
-
hist['ax'][1].set_title('
|
761
|
+
hist['ax'][1].set_title('Train Accuracy Over Gen')
|
762
762
|
hist['artist2'].append(art2)
|
763
763
|
|
764
764
|
# Activation shape plot
|
@@ -768,7 +768,7 @@ def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_ac
|
|
768
768
|
translated_x_train += draw_activations(x, activation)
|
769
769
|
|
770
770
|
art3 = hist['ax'][2].plot(x, translated_x_train, color='b', markersize=6, linewidth=2)
|
771
|
-
hist['ax'][2].set_title('Potentiation Shape Over
|
771
|
+
hist['ax'][2].set_title('Potentiation Shape Over Gen')
|
772
772
|
hist['artist3'].append(art3)
|
773
773
|
|
774
774
|
def display_visualizations_for_learner(viz_objects, best_weights, data, best_acc, test_loss, y_train, interval):
|
@@ -1,7 +1,6 @@
|
|
1
1
|
import networkx as nx
|
2
2
|
import matplotlib.pyplot as plt
|
3
3
|
import cupy as cp
|
4
|
-
import numpy as np
|
5
4
|
from scipy.spatial import ConvexHull
|
6
5
|
import seaborn as sns
|
7
6
|
from matplotlib.animation import ArtistAnimation
|
@@ -323,7 +322,7 @@ def draw_activations(x_train, activation):
|
|
323
322
|
|
324
323
|
try: return result
|
325
324
|
except:
|
326
|
-
print('
|
325
|
+
print('\rWARNING: error in drawing some activation.', end='')
|
327
326
|
return x_train
|
328
327
|
|
329
328
|
|
@@ -752,7 +751,7 @@ def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_ac
|
|
752
751
|
|
753
752
|
# Loss plot
|
754
753
|
art1 = hist['ax'][0].plot(depth_list, loss_list, color='r', markersize=6, linewidth=2)
|
755
|
-
hist['ax'][0].set_title('
|
754
|
+
hist['ax'][0].set_title('Train Loss Over Gen')
|
756
755
|
hist['artist1'].append(art1)
|
757
756
|
|
758
757
|
# Accuracy plot
|
@@ -761,7 +760,7 @@ def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_ac
|
|
761
760
|
best_acc_per_depth_list[i] = best_acc_per_depth_list[i].get()
|
762
761
|
|
763
762
|
art2 = hist['ax'][1].plot(depth_list, best_acc_per_depth_list, color='g', markersize=6, linewidth=2)
|
764
|
-
hist['ax'][1].set_title('
|
763
|
+
hist['ax'][1].set_title('Train Accuracy Over Gen')
|
765
764
|
hist['artist2'].append(art2)
|
766
765
|
|
767
766
|
# Activation shape plot
|
@@ -771,7 +770,7 @@ def update_history_plots_for_learner(viz_objects, depth_list, loss_list, best_ac
|
|
771
770
|
translated_x_train += draw_activations(x, activation)
|
772
771
|
|
773
772
|
art3 = hist['ax'][2].plot(x.get(), translated_x_train.get(), color='b', markersize=6, linewidth=2)
|
774
|
-
hist['ax'][2].set_title('Potentiation Shape Over
|
773
|
+
hist['ax'][2].set_title('Potentiation Shape Over Gen')
|
775
774
|
hist['artist3'].append(art3)
|
776
775
|
|
777
776
|
def display_visualizations_for_learner(viz_objects, best_weights, data, best_acc, test_loss, y_train, interval):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.2.
|
3
|
+
Version: 4.2.3
|
4
4
|
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=WEa6P6TMj_krls2lUT03x8-D9kFttdmY3Ebk0ODmt40,639
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
|
4
4
|
pyerualjetwork/data_operations.py,sha256=pb5CqJ0Th6fCjTNMCtqQMiwH3KezTxAijacglsKUxmY,14730
|
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
|
|
11
11
|
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
12
12
|
pyerualjetwork/model_operations.py,sha256=RKqnh7-MByFosxqme4q4jC1lOndX26O-OVXYV6ZxoEE,12965
|
13
13
|
pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
|
14
|
-
pyerualjetwork/plan.py,sha256
|
15
|
-
pyerualjetwork/plan_cuda.py,sha256=
|
14
|
+
pyerualjetwork/plan.py,sha256=YOBF2CqGu400Zk6xuraP0X8WzMNyejpZc5tdVV4dEvE,32219
|
15
|
+
pyerualjetwork/plan_cuda.py,sha256=OKK0pmJYLQd5-dJ1aLiyWiZRBmoUp1zBkFxRcxnWBVI,33610
|
16
16
|
pyerualjetwork/planeat.py,sha256=hMSyrSPipOxKgOqyoAiZtniVgxPQxc4rRsvEEMOS2Ng,40757
|
17
17
|
pyerualjetwork/planeat_cuda.py,sha256=9uopmM-gTZpSb0EOExrOZPT8FF5BqDdEfCX0zYQb9QU,40712
|
18
18
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
|
-
pyerualjetwork/visualizations.py,sha256=
|
20
|
-
pyerualjetwork/visualizations_cuda.py,sha256=
|
21
|
-
pyerualjetwork-4.2.
|
22
|
-
pyerualjetwork-4.2.
|
23
|
-
pyerualjetwork-4.2.
|
24
|
-
pyerualjetwork-4.2.
|
19
|
+
pyerualjetwork/visualizations.py,sha256=1SKMZaJ80OD2qHUyMxW1IOv8zwmxzMPxclfbeq1Xr4g,28772
|
20
|
+
pyerualjetwork/visualizations_cuda.py,sha256=KbMhfsLlxujy_i3QrwCf734Q-k6d7Zn_7CEbm3gzK9w,29186
|
21
|
+
pyerualjetwork-4.2.3.dist-info/METADATA,sha256=f5KIbL0mISOhbhHGoj3WhXS0chLm6GSyEq3dsnyeYrQ,7912
|
22
|
+
pyerualjetwork-4.2.3.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
23
|
+
pyerualjetwork-4.2.3.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
24
|
+
pyerualjetwork-4.2.3.dist-info/RECORD,,
|
File without changes
|
File without changes
|