pyerualjetwork 4.2.2b5__py3-none-any.whl → 4.2.2b6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- __version__ = "4.2.2b5"
1
+ __version__ = "4.2.2b6"
2
2
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
3
3
 
4
4
  def print_version(__version__):
pyerualjetwork/plan.py CHANGED
@@ -314,9 +314,9 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
314
314
  x_train_batch, y_train_batch = batcher(x_train, y_train, batch_size=batch_size)
315
315
 
316
316
  if fit_start is True and i == 0:
317
- act_pop.append(activation_potentiation[j])
318
- W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
319
- weight_pop.append(W)
317
+ act_pop[j] = activation_potentiation[j]
318
+ W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[j], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
319
+ weight_pop[j] = W
320
320
 
321
321
  model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], loading_bar_status=False, activation_potentiation=act_pop[j], dtype=dtype)
322
322
  acc = model[get_acc()]
@@ -337,12 +337,12 @@ def learner(x_train, y_train, optimizer, fit_start, strategy='accuracy', gen=Non
337
337
  for j in range(activation_potentiation_len):
338
338
 
339
339
  x_train_batch, y_train_batch = batcher(x_train, y_train, batch_size=batch_size)
340
-
340
+
341
341
  if fit_start is True and i == 0:
342
- act_pop.append(activation_potentiation[j])
343
- W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
344
- weight_pop.append(W)
345
-
342
+ act_pop[j] = activation_potentiation[j]
343
+ W = fit(x_train_batch, y_train_batch, activation_potentiation=act_pop[j], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
344
+ weight_pop[j] = W
345
+
346
346
  model = evaluate(x_train_batch, y_train_batch, W=weight_pop[j], loading_bar_status=False, activation_potentiation=act_pop[j], dtype=dtype, memory=memory)
347
347
  acc = model[get_acc()]
348
348
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.2.2b5
3
+ Version: 4.2.2b6
4
4
  Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=jCSoAWmX1GCN4tOGRp2UsvgxojBEUi4abZxyxQ2ygl8,641
1
+ pyerualjetwork/__init__.py,sha256=QzjCtwOnZg709lcpPOYIHkNRwXJ50ho3lU-wX2IOhZY,641
2
2
  pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
4
4
  pyerualjetwork/data_operations.py,sha256=pb5CqJ0Th6fCjTNMCtqQMiwH3KezTxAijacglsKUxmY,14730
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
11
11
  pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
12
12
  pyerualjetwork/model_operations.py,sha256=RKqnh7-MByFosxqme4q4jC1lOndX26O-OVXYV6ZxoEE,12965
13
13
  pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
14
- pyerualjetwork/plan.py,sha256=tyV-Xtg6u_aVvPmBAdLct7GnTO73xbp9SHe011Tact0,32186
15
- pyerualjetwork/plan_cuda.py,sha256=uzLwJP31zy9qH5QUmbOFH6cv20h_8gwCpvubQTlYB-o,33517
14
+ pyerualjetwork/plan.py,sha256=nIMdYg_p14zB-L9Q5ARDxGn6c31WBQKbCZQw835_fo0,32179
15
+ pyerualjetwork/plan_cuda.py,sha256=QlIUKAl4pE1kyz3iWHx34RwuF2qwKBxZGHpV89OO9ro,33511
16
16
  pyerualjetwork/planeat.py,sha256=hMSyrSPipOxKgOqyoAiZtniVgxPQxc4rRsvEEMOS2Ng,40757
17
17
  pyerualjetwork/planeat_cuda.py,sha256=9uopmM-gTZpSb0EOExrOZPT8FF5BqDdEfCX0zYQb9QU,40712
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=QaYSIyVkJZ8NqpBKArQKkI1y37nCQo_KIM98IMssnRc,28766
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=F60vQ92AXlMgBka3InXnOtGoM25vQJAlBIU2AlYTwks,29200
21
- pyerualjetwork-4.2.2b5.dist-info/METADATA,sha256=iCMk-fDHiW4yLCHSnWuDx7hJuGtdwWWD_MAUAoVmAmc,7914
22
- pyerualjetwork-4.2.2b5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
- pyerualjetwork-4.2.2b5.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
- pyerualjetwork-4.2.2b5.dist-info/RECORD,,
21
+ pyerualjetwork-4.2.2b6.dist-info/METADATA,sha256=Nb0_rLZzjWAe4zpIEmG7BhWqGSFxz_KPqdcWPfYopMo,7914
22
+ pyerualjetwork-4.2.2b6.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
+ pyerualjetwork-4.2.2b6.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
+ pyerualjetwork-4.2.2b6.dist-info/RECORD,,