pyerualjetwork 4.2.0b6__py3-none-any.whl → 4.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +2 -52
- pyerualjetwork/data_operations.py +4 -0
- pyerualjetwork/help.py +2 -1
- pyerualjetwork/memory_operations.py +4 -4
- pyerualjetwork/plan.py +3 -3
- pyerualjetwork/plan_cuda.py +3 -3
- pyerualjetwork/planeat.py +3 -3
- pyerualjetwork/planeat_cuda.py +1 -1
- {pyerualjetwork-4.2.0b6.dist-info → pyerualjetwork-4.2.1.dist-info}/METADATA +2 -2
- {pyerualjetwork-4.2.0b6.dist-info → pyerualjetwork-4.2.1.dist-info}/RECORD +12 -12
- {pyerualjetwork-4.2.0b6.dist-info → pyerualjetwork-4.2.1.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.2.0b6.dist-info → pyerualjetwork-4.2.1.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -1,55 +1,5 @@
|
|
1
|
-
|
2
|
-
|
3
|
-
subprocess.check_call(["pip", "install", 'setuptools==75.6.0'])
|
4
|
-
import pkg_resources
|
5
|
-
|
6
|
-
print("Auto checking and installation dependencies for PyerualJetwork")
|
7
|
-
|
8
|
-
package_names = [
|
9
|
-
'scipy==1.13.1',
|
10
|
-
'tqdm==4.66.4',
|
11
|
-
'seaborn==0.13.2',
|
12
|
-
'pandas==2.2.2',
|
13
|
-
'networkx==3.3',
|
14
|
-
'numpy==1.26.4',
|
15
|
-
'matplotlib==3.9.0',
|
16
|
-
'colorama==0.4.6',
|
17
|
-
'psutil==6.1.1',
|
18
|
-
'cupy-cuda12x==13.3.0'
|
19
|
-
]
|
20
|
-
|
21
|
-
installed_packages = pkg_resources.working_set
|
22
|
-
installed = {pkg.key: pkg.version for pkg in installed_packages}
|
23
|
-
err = 0
|
24
|
-
|
25
|
-
for package_name in package_names:
|
26
|
-
package_name_only, required_version = package_name.split('==')
|
27
|
-
|
28
|
-
if package_name_only not in installed:
|
29
|
-
|
30
|
-
try:
|
31
|
-
print(f"{package_name} Installing...")
|
32
|
-
subprocess.check_call(["pip", "install", package_name])
|
33
|
-
except Exception as e:
|
34
|
-
err += 1
|
35
|
-
print(f"Error installing {package_name} library, installation continues: {e}")
|
36
|
-
else:
|
37
|
-
|
38
|
-
installed_version = installed[package_name_only]
|
39
|
-
if installed_version != required_version:
|
40
|
-
print(f"Updating {package_name_only} from version {installed_version} to {required_version}...")
|
41
|
-
try:
|
42
|
-
subprocess.check_call(["pip", "install", package_name])
|
43
|
-
except Exception as e:
|
44
|
-
err += 1
|
45
|
-
print(f"Error updating {package_name} library, installation continues: {e}")
|
46
|
-
else:
|
47
|
-
print(f"{package_name} ready.")
|
48
|
-
|
49
|
-
print(f"PyerualJetwork is ready to use with {err} errors")
|
50
|
-
|
51
|
-
__version__ = "4.2.0b6"
|
52
|
-
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
1
|
+
__version__ = "4.2.1"
|
2
|
+
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork Homepage: https://github.com/HCB06/PyerualJetwork/tree/main\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
53
3
|
|
54
4
|
def print_version(__version__):
|
55
5
|
print(f"PyerualJetwork Version {__version__}" + '\n')
|
@@ -66,9 +66,13 @@ def split(X, y, test_size, random_state=42, dtype=np.float32):
|
|
66
66
|
|
67
67
|
Args:
|
68
68
|
X (numpy.ndarray): Features data.
|
69
|
+
|
69
70
|
y (numpy.ndarray): Labels data.
|
71
|
+
|
70
72
|
test_size (float or int): Proportion or number of samples for the test subset.
|
73
|
+
|
71
74
|
random_state (int or None): Seed for random state. Default: 42.
|
75
|
+
|
72
76
|
dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!]
|
73
77
|
|
74
78
|
Returns:
|
pyerualjetwork/help.py
CHANGED
@@ -34,13 +34,13 @@ def transfer_to_cpu(x, dtype=np.float32):
|
|
34
34
|
The `transfer_to_cpu` function converts data to a specified data type on the CPU, handling memory constraints
|
35
35
|
by batching the conversion process and ensuring complete GPU memory cleanup.
|
36
36
|
|
37
|
-
|
37
|
+
param x: Input data to transfer to CPU (CuPy array)
|
38
38
|
|
39
|
-
|
39
|
+
param dtype: Target NumPy dtype for the output array (default: np.float32)
|
40
40
|
|
41
|
-
|
41
|
+
return: NumPy array with the specified dtype
|
42
42
|
"""
|
43
|
-
from ui import loading_bars, initialize_loading_bar
|
43
|
+
from .ui import loading_bars, initialize_loading_bar
|
44
44
|
try:
|
45
45
|
if isinstance(x, np.ndarray):
|
46
46
|
return x.astype(dtype) if x.dtype != dtype else x
|
pyerualjetwork/plan.py
CHANGED
@@ -195,10 +195,10 @@ def learner(x_train, y_train, optimizer, x_test=None, y_test=None, strategy='acc
|
|
195
195
|
|
196
196
|
optimizer (function): PLAN optimization technique with hyperparameters. (PLAN using NEAT(PLANEAT) for optimization.) Please use this: from pyerualjetwork import planeat (and) optimizer = lambda *args, **kwargs: planeat.evolve(*args, 'here give your neat hyperparameters for example: activation_add_prob=0.85', **kwargs) Example:
|
197
197
|
```python
|
198
|
-
genetic_optimizer = lambda *args, **kwargs: planeat.
|
198
|
+
genetic_optimizer = lambda *args, **kwargs: planeat.evolver(*args,
|
199
199
|
activation_add_prob=0.85,
|
200
|
-
mutations=
|
201
|
-
strategy='
|
200
|
+
mutations=True,
|
201
|
+
strategy='aggressive',
|
202
202
|
**kwargs)
|
203
203
|
|
204
204
|
model = plan.learner(x_train,
|
pyerualjetwork/plan_cuda.py
CHANGED
@@ -210,10 +210,10 @@ def learner(x_train, y_train, optimizer, x_test=None, y_test=None, strategy='acc
|
|
210
210
|
|
211
211
|
optimizer (function): PLAN optimization technique with hyperparameters. (PLAN using NEAT(PLANEAT) for optimization.) Please use this: from pyerualjetwork import planeat_cuda (and) optimizer = lambda *args, **kwargs: planeat_cuda.evolve(*args, 'here give your neat hyperparameters for example: activation_add_prob=0.85', **kwargs) Example:
|
212
212
|
```python
|
213
|
-
genetic_optimizer = lambda *args, **kwargs: planeat_cuda.
|
213
|
+
genetic_optimizer = lambda *args, **kwargs: planeat_cuda.evolver(*args,
|
214
214
|
activation_add_prob=0.85,
|
215
|
-
mutations=
|
216
|
-
strategy='
|
215
|
+
mutations=True,
|
216
|
+
strategy='aggressive',
|
217
217
|
**kwargs)
|
218
218
|
|
219
219
|
model = plan_cuda.learner(x_train,
|
pyerualjetwork/planeat.py
CHANGED
@@ -190,7 +190,7 @@ def evolver(weights,
|
|
190
190
|
|
191
191
|
Raises:
|
192
192
|
ValueError:
|
193
|
-
- If `policy` is not one of the specified values ('
|
193
|
+
- If `policy` is not one of the specified values ('aggressive', 'explorer').
|
194
194
|
- If 'strategy' is not one of the specified values ('less_selective', 'normal_selective', 'more_selective')
|
195
195
|
- If `cross_over_mode` is not one of the specified values ('tpm').
|
196
196
|
- If `bad_genomes_mutation_prob`, `activation_mutate_prob`, or other probability parameters are not in the range 0 and 1.
|
@@ -222,7 +222,7 @@ def evolver(weights,
|
|
222
222
|
|
223
223
|
Example:
|
224
224
|
```python
|
225
|
-
weights, activation_potentiations = planeat.evolver(weights, activation_potentiations, 1, fitness, show_info=True, strategy='normal_selective', policy='
|
225
|
+
weights, activation_potentiations = planeat.evolver(weights, activation_potentiations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
|
226
226
|
```
|
227
227
|
|
228
228
|
- The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
|
@@ -554,7 +554,7 @@ def cross_over(first_parent_W,
|
|
554
554
|
first_parent_fitness=0.9,
|
555
555
|
second_parent_fitness=0.85,
|
556
556
|
fitness_bias=0.6,
|
557
|
-
epsilon=np.finfo.eps
|
557
|
+
epsilon=np.finfo(float).eps
|
558
558
|
)
|
559
559
|
```
|
560
560
|
"""
|
pyerualjetwork/planeat_cuda.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.2.
|
4
|
-
Summary: PyerualJetwork is a machine learning library written in Python for professionals
|
3
|
+
Version: 4.2.1
|
4
|
+
Summary: PyerualJetwork is a machine learning library supported with GPU(CUDA) acceleration written in Python for professionals and researchers including with PLAN algorithm, PLANEAT algorithm (genetic optimization). Also includes data pre-process and memory manegament
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
7
7
|
Keywords: model evaluation,classification,potentiation learning artificial neural networks,NEAT,genetic algorithms,reinforcement learning,neural networks
|
@@ -1,24 +1,24 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=VhaX5FzNtwSCXlCCWPHIdrSCTimD14fwAnfZQcDjTqQ,646
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
|
4
|
-
pyerualjetwork/data_operations.py,sha256=
|
4
|
+
pyerualjetwork/data_operations.py,sha256=pb5CqJ0Th6fCjTNMCtqQMiwH3KezTxAijacglsKUxmY,14730
|
5
5
|
pyerualjetwork/data_operations_cuda.py,sha256=UpoJoFhIwTU4xg9dVuLAxLAT4CkRaGsxvtJG9j1xrNo,17629
|
6
|
-
pyerualjetwork/help.py,sha256=
|
6
|
+
pyerualjetwork/help.py,sha256=nQ_YbYA2RtuafhuvkreNpX0WWL1I_nzlelwCtvei0_Y,775
|
7
7
|
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
8
8
|
pyerualjetwork/loss_functions_cuda.py,sha256=C93IZJcrOpT6HMK9x1O4AHJWXYTkN5WZiqdssPbvAPk,617
|
9
|
-
pyerualjetwork/memory_operations.py,sha256=
|
9
|
+
pyerualjetwork/memory_operations.py,sha256=I7QiZ--xSyRkFF0wcckPwZV7K9emEvyx5aJ3DiRHZFI,13468
|
10
10
|
pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,6077
|
11
11
|
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
12
12
|
pyerualjetwork/model_operations.py,sha256=hnhR8dtoICNJWIwGgJ65-LN3GYN_DYH4LMe6YpZVbnI,12967
|
13
13
|
pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
|
14
|
-
pyerualjetwork/plan.py,sha256=
|
15
|
-
pyerualjetwork/plan_cuda.py,sha256=
|
16
|
-
pyerualjetwork/planeat.py,sha256=
|
17
|
-
pyerualjetwork/planeat_cuda.py,sha256=
|
14
|
+
pyerualjetwork/plan.py,sha256=hvgRaJgz_31ixI6XDy_lkucQwbAN0iIqAj4aTc0oFiw,34422
|
15
|
+
pyerualjetwork/plan_cuda.py,sha256=ZTScc7VlqBLKUh6OtweJeGh-gf244nlPHTOeYrNaIyg,36065
|
16
|
+
pyerualjetwork/planeat.py,sha256=hofSkdFHoGXP52GUpTOQ-QwhPF2Vf6zwEdoesfpmWxU,41006
|
17
|
+
pyerualjetwork/planeat_cuda.py,sha256=0DOU1cL-JeifSAF9Q_bBpEeAJp9zxB7_oS_GyNepixo,40970
|
18
18
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
19
|
pyerualjetwork/visualizations.py,sha256=QaYSIyVkJZ8NqpBKArQKkI1y37nCQo_KIM98IMssnRc,28766
|
20
20
|
pyerualjetwork/visualizations_cuda.py,sha256=F60vQ92AXlMgBka3InXnOtGoM25vQJAlBIU2AlYTwks,29200
|
21
|
-
pyerualjetwork-4.2.
|
22
|
-
pyerualjetwork-4.2.
|
23
|
-
pyerualjetwork-4.2.
|
24
|
-
pyerualjetwork-4.2.
|
21
|
+
pyerualjetwork-4.2.1.dist-info/METADATA,sha256=1kq1oOOpZna0dDry5QSj3L8odHpHG73rf6KRbBHpE4o,7912
|
22
|
+
pyerualjetwork-4.2.1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
23
|
+
pyerualjetwork-4.2.1.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
24
|
+
pyerualjetwork-4.2.1.dist-info/RECORD,,
|
File without changes
|
File without changes
|