pyerualjetwork 4.2.0b4__py3-none-any.whl → 4.2.0b6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -48,7 +48,7 @@ for package_name in package_names:
48
48
 
49
49
  print(f"PyerualJetwork is ready to use with {err} errors")
50
50
 
51
- __version__ = "4.2.0b4"
51
+ __version__ = "4.2.0b6"
52
52
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
53
53
 
54
54
  def print_version(__version__):
pyerualjetwork/planeat.py CHANGED
@@ -76,7 +76,7 @@ def evolver(weights,
76
76
  what_gen,
77
77
  fitness,
78
78
  show_info=False,
79
- policy='aggresive',
79
+ policy='aggressive',
80
80
  bad_genomes_selection_prob=None,
81
81
  bar_status=True,
82
82
  strategy='normal_selective',
@@ -128,7 +128,7 @@ def evolver(weights,
128
128
 
129
129
  policy (str, optional): The selection policy that governs how genomes are selected for reproduction. Options:
130
130
 
131
- - 'aggresive': Aggressive policy using very aggressive selection policy.
131
+ - 'aggressive': Aggressive policy using very aggressive selection policy.
132
132
  Advantages: fast training.
133
133
  Disadvantages: may lead to fitness stuck in a local maximum or minimum.
134
134
 
@@ -138,7 +138,7 @@ def evolver(weights,
138
138
 
139
139
  Suggestions: Use hybrid and dynamic policy. When fitness appears stuck, switch to the 'explorer' policy.
140
140
 
141
- Default: 'aggresive'.
141
+ Default: 'aggressive'.
142
142
 
143
143
  target_fitness (str, optional): Target fitness strategy for PLANEAT optimization. ('max' maximizes fitness, 'min' minimizes fitness.) Default: 'max'.
144
144
 
@@ -307,12 +307,9 @@ def evolver(weights,
307
307
  best_fitness = normalized_fitness[-1]
308
308
  epsilon = np.finfo(float).eps
309
309
 
310
- child_W = np.empty(bad_weights[0].shape, dtype=dtype)
311
- child_act = bad_activations.copy()
312
-
313
310
  for i in range(len(bad_weights)):
314
311
 
315
- if policy == 'aggresive':
312
+ if policy == 'aggressive':
316
313
  first_parent_W = best_weight
317
314
  first_parent_act = best_activations
318
315
 
@@ -320,11 +317,11 @@ def evolver(weights,
320
317
  first_parent_W = good_weights[i]
321
318
  first_parent_act = good_activations[i]
322
319
 
323
- else: raise ValueError("policy parameter must be: 'aggresive' or 'explorer'")
320
+ else: raise ValueError("policy parameter must be: 'aggressive' or 'explorer'")
324
321
 
325
322
  second_parent_W, second_parent_act, s_i = second_parent_selection(good_weights, bad_weights, good_activations, bad_activations, bad_genomes_selection_prob)
326
323
 
327
- child_W[i], child_act[i] = cross_over(first_parent_W,
324
+ bad_weights[i], bad_activations[i] = cross_over(first_parent_W,
328
325
  second_parent_W,
329
326
  first_parent_act,
330
327
  second_parent_act,
@@ -373,8 +370,8 @@ def evolver(weights,
373
370
 
374
371
  if bar_status: progress.update(1)
375
372
 
376
- weights = np.vstack((child_W, good_weights))
377
- activation_potentiations = child_act + good_activations
373
+ weights = np.vstack((bad_weights, good_weights))
374
+ activation_potentiations = bad_activations + good_activations
378
375
 
379
376
  ### INFO PRINTING CONSOLE
380
377
 
@@ -78,7 +78,7 @@ def evolver(weights,
78
78
  what_gen,
79
79
  fitness,
80
80
  show_info=False,
81
- policy='aggresive',
81
+ policy='aggressive',
82
82
  bad_genomes_selection_prob=None,
83
83
  bar_status=True,
84
84
  strategy='normal_selective',
@@ -130,7 +130,7 @@ def evolver(weights,
130
130
 
131
131
  policy (str, optional): The selection policy that governs how genomes are selected for reproduction. Options:
132
132
 
133
- - 'aggresive': Aggressive policy using very aggressive selection policy.
133
+ - 'aggressive': Aggressive policy using very aggressive selection policy.
134
134
  Advantages: fast training.
135
135
  Disadvantages: may lead to fitness stuck in a local maximum or minimum.
136
136
 
@@ -140,7 +140,7 @@ def evolver(weights,
140
140
 
141
141
  Suggestions: Use hybrid and dynamic policy. When fitness appears stuck, switch to the 'explorer' policy.
142
142
 
143
- Default: 'aggresive'.
143
+ Default: 'aggressive'.
144
144
 
145
145
  target_fitness (str, optional): Target fitness strategy for PLANEAT optimization. ('max' maximizes fitness, 'min' minimizes fitness.) Default: 'max'.
146
146
 
@@ -192,7 +192,7 @@ def evolver(weights,
192
192
 
193
193
  Raises:
194
194
  ValueError:
195
- - If `policy` is not one of the specified values ('aggresive', 'explorer').
195
+ - If `policy` is not one of the specified values ('aggressive', 'explorer').
196
196
  - If 'strategy' is not one of the specified values ('less_selective', 'normal_selective', 'more_selective')
197
197
  - If `cross_over_mode` is not one of the specified values ('tpm').
198
198
  - If `bad_genomes_mutation_prob`, `activation_mutate_prob`, or other probability parameters are not in the range 0 and 1.
@@ -224,7 +224,7 @@ def evolver(weights,
224
224
 
225
225
  Example:
226
226
  ```python
227
- weights, activation_potentiations = planeat.evolver(weights, activation_potentiations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggresive')
227
+ weights, activation_potentiations = planeat.evolver(weights, activation_potentiations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
228
228
  ```
229
229
 
230
230
  - The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
@@ -306,13 +306,10 @@ def evolver(weights,
306
306
 
307
307
  best_fitness = normalized_fitness[-1]
308
308
  epsilon = cp.finfo(float).eps
309
-
310
- child_W = cp.empty(bad_weights[0].shape, dtype=dtype)
311
- child_act = bad_activations.copy()
312
309
 
313
310
  for i in range(len(bad_weights)):
314
311
 
315
- if policy == 'aggresive':
312
+ if policy == 'aggressive':
316
313
  first_parent_W = best_weight
317
314
  first_parent_act = best_activations
318
315
 
@@ -320,11 +317,11 @@ def evolver(weights,
320
317
  first_parent_W = good_weights[i]
321
318
  first_parent_act = good_activations[i]
322
319
 
323
- else: raise ValueError("policy parameter must be: 'aggresive' or 'explorer'")
320
+ else: raise ValueError("policy parameter must be: 'aggressive' or 'explorer'")
324
321
 
325
322
  second_parent_W, second_parent_act, s_i = second_parent_selection(good_weights, bad_weights, good_activations, bad_activations, bad_genomes_selection_prob)
326
323
 
327
- child_W[i], child_act[i] = cross_over(first_parent_W,
324
+ bad_weights[i], bad_activations[i] = cross_over(first_parent_W,
328
325
  second_parent_W,
329
326
  first_parent_act,
330
327
  second_parent_act,
@@ -373,8 +370,8 @@ def evolver(weights,
373
370
 
374
371
  if bar_status: progress.update(1)
375
372
 
376
- weights = cp.vstack((child_W, good_weights))
377
- activation_potentiations = child_act + good_activations
373
+ weights = cp.vstack((bad_weights, good_weights))
374
+ activation_potentiations = bad_activations + good_activations
378
375
 
379
376
  ### INFO PRINTING CONSOLE
380
377
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.2.0b4
3
+ Version: 4.2.0b6
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=VRFLz0qjl7ZNj1nm6TFjuEit1_lEp-qO6GuBhakW_wA,2177
1
+ pyerualjetwork/__init__.py,sha256=Kw8tdzAvdhcMyujbsOF0VTVKE5wB-uqKBZ4AH8iNlcQ,2177
2
2
  pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
4
4
  pyerualjetwork/data_operations.py,sha256=HjyW2QE18age6J8iG0jpbwqGOylL_nM-vE2CLbP9Wes,14690
@@ -13,12 +13,12 @@ pyerualjetwork/model_operations.py,sha256=hnhR8dtoICNJWIwGgJ65-LN3GYN_DYH4LMe6Yp
13
13
  pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
14
14
  pyerualjetwork/plan.py,sha256=EobwajGSIgbOujkzDKb-Kea0LGRHqpK3Xy1Le8VBAe8,34422
15
15
  pyerualjetwork/plan_cuda.py,sha256=iCcAHLzVw_VyjhkFHXzBWiedwbnpI1MCXNJgSDgZxWw,36065
16
- pyerualjetwork/planeat.py,sha256=Lr79cXaHsTYkLEA9zrrI0mIdLDy5l5Qa0_tlkqugxGE,41071
17
- pyerualjetwork/planeat_cuda.py,sha256=qHwISR1JOaTYklBKf59BQ-ixPDlludk61dJMrp-wNi0,41038
16
+ pyerualjetwork/planeat.py,sha256=EtmOUCRmkXGuSj35fU5Y-gvBsRodVlMsEgvbrXIzY2A,40997
17
+ pyerualjetwork/planeat_cuda.py,sha256=XkFbQF7pmPRWCQTacbmIab8yWkq-6S3dM-N1ehxzSvk,40963
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=QaYSIyVkJZ8NqpBKArQKkI1y37nCQo_KIM98IMssnRc,28766
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=F60vQ92AXlMgBka3InXnOtGoM25vQJAlBIU2AlYTwks,29200
21
- pyerualjetwork-4.2.0b4.dist-info/METADATA,sha256=B8Katp20szrJ7XPZSy4YfVNsdJSLUJsepiZ5dasYDww,7795
22
- pyerualjetwork-4.2.0b4.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
- pyerualjetwork-4.2.0b4.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
- pyerualjetwork-4.2.0b4.dist-info/RECORD,,
21
+ pyerualjetwork-4.2.0b6.dist-info/METADATA,sha256=-m0uyY5sgobRog9idkhbeSHS5l9h_qDoKywhbG2sAes,7795
22
+ pyerualjetwork-4.2.0b6.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
+ pyerualjetwork-4.2.0b6.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
+ pyerualjetwork-4.2.0b6.dist-info/RECORD,,