pyerualjetwork 4.2.0b1__py3-none-any.whl → 4.2.0b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -48,7 +48,7 @@ for package_name in package_names:
48
48
 
49
49
  print(f"PyerualJetwork is ready to use with {err} errors")
50
50
 
51
- __version__ = "4.2.0b1"
51
+ __version__ = "4.2.0b2"
52
52
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
53
53
 
54
54
  def print_version(__version__):
pyerualjetwork/planeat.py CHANGED
@@ -248,6 +248,8 @@ def evolver(weights,
248
248
  else:
249
249
  raise ValueError("strategy parameter must be: 'normal_selective' or 'more_selective' or 'less_selective'")
250
250
 
251
+ if policy == 'explorer': fitness_bias = 0
252
+
251
253
  if ((activation_mutate_add_prob < 0 or activation_mutate_add_prob > 1) or
252
254
  (activation_mutate_change_prob < 0 or activation_mutate_change_prob > 1) or
253
255
  (activation_mutate_delete_prob < 0 or activation_mutate_delete_prob > 1) or
@@ -304,14 +306,11 @@ def evolver(weights,
304
306
 
305
307
  best_fitness = normalized_fitness[-1]
306
308
 
307
- child_W = np.copy(bad_weights)
308
- child_act = bad_activations.copy()
309
-
310
309
  for i in range(len(bad_weights)):
311
310
  second_parent_W, second_parent_act, s_i = second_parent_selection(good_weights, bad_weights, good_activations, bad_activations, bad_genomes_selection_prob)
312
311
 
313
312
  if policy == 'aggresive':
314
- child_W[i], child_act[i] = cross_over(best_weights,
313
+ bad_weights[i], bad_activations[i] = cross_over(best_weights,
315
314
  second_parent_W,
316
315
  best_activations,
317
316
  second_parent_act,
@@ -325,7 +324,7 @@ def evolver(weights,
325
324
  second_parent_fitness=normalized_fitness[s_i]
326
325
  )
327
326
  elif policy == 'explorer':
328
- child_W[i], child_act[i] = cross_over(good_weights[i],
327
+ bad_weights[i], bad_activations[i] = cross_over(good_weights[i],
329
328
  second_parent_W,
330
329
  good_activations[i],
331
330
  second_parent_act,
@@ -371,8 +370,8 @@ def evolver(weights,
371
370
 
372
371
  if bar_status: progress.update(1)
373
372
 
374
- weights = np.vstack((child_W, good_weights))
375
- activation_potentiations = child_act + good_activations
373
+ weights = np.vstack((bad_weights, good_weights))
374
+ activation_potentiations = bad_activations + good_activations
376
375
 
377
376
  ### INFO PRINTING CONSOLE
378
377
 
@@ -249,6 +249,8 @@ def evolver(weights,
249
249
  else:
250
250
  raise ValueError("strategy parameter must be: 'normal_selective' or 'more_selective' or 'less_selective'")
251
251
 
252
+ if policy =='explorer': fitness_bias = 0
253
+
252
254
  if ((activation_mutate_add_prob < 0 or activation_mutate_add_prob > 1) or
253
255
  (activation_mutate_change_prob < 0 or activation_mutate_change_prob > 1) or
254
256
  (activation_mutate_delete_prob < 0 or activation_mutate_delete_prob > 1) or
@@ -304,14 +306,11 @@ def evolver(weights,
304
306
 
305
307
  best_fitness = normalized_fitness[-1]
306
308
 
307
- child_W = cp.copy(bad_weights)
308
- child_act = bad_activations.copy()
309
-
310
309
  for i in range(len(bad_weights)):
311
310
  second_parent_W, second_parent_act, s_i = second_parent_selection(good_weights, bad_weights, good_activations, bad_activations, bad_genomes_selection_prob)
312
311
 
313
312
  if policy == 'aggresive':
314
- child_W[i], child_act[i] = cross_over(best_weights,
313
+ bad_weights[i], bad_activations[i] = cross_over(best_weights,
315
314
  second_parent_W,
316
315
  best_activations,
317
316
  second_parent_act,
@@ -325,7 +324,7 @@ def evolver(weights,
325
324
  second_parent_fitness=normalized_fitness[s_i]
326
325
  )
327
326
  elif policy == 'explorer':
328
- child_W[i], child_act[i] = cross_over(good_weights[i],
327
+ bad_weights[i], bad_activations[i] = cross_over(good_weights[i],
329
328
  second_parent_W,
330
329
  good_activations[i],
331
330
  second_parent_act,
@@ -371,8 +370,8 @@ def evolver(weights,
371
370
 
372
371
  if bar_status: progress.update(1)
373
372
 
374
- weights = cp.vstack((child_W, good_weights))
375
- activation_potentiations = child_act + good_activations
373
+ weights = cp.vstack((bad_weights, good_weights))
374
+ activation_potentiations = bad_activations + good_activations
376
375
 
377
376
  ### INFO PRINTING CONSOLE
378
377
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.2.0b1
3
+ Version: 4.2.0b2
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=UeD-cBkv904KlDncOWplEjPeNW9jPMkyjdaaTYJUDnY,2177
1
+ pyerualjetwork/__init__.py,sha256=tVdYMhPnjJvAckaBx6ZO9kvv59yuEQ997QzFlcqcUno,2177
2
2
  pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
4
4
  pyerualjetwork/data_operations.py,sha256=HjyW2QE18age6J8iG0jpbwqGOylL_nM-vE2CLbP9Wes,14690
@@ -13,12 +13,12 @@ pyerualjetwork/model_operations.py,sha256=hnhR8dtoICNJWIwGgJ65-LN3GYN_DYH4LMe6Yp
13
13
  pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
14
14
  pyerualjetwork/plan.py,sha256=EobwajGSIgbOujkzDKb-Kea0LGRHqpK3Xy1Le8VBAe8,34422
15
15
  pyerualjetwork/plan_cuda.py,sha256=iCcAHLzVw_VyjhkFHXzBWiedwbnpI1MCXNJgSDgZxWw,36065
16
- pyerualjetwork/planeat.py,sha256=--KO3cUAvUJ0L-qF2w2doHFX_UZvv0SsN-voPWJ7joY,41454
17
- pyerualjetwork/planeat_cuda.py,sha256=g-gdSAA-a1ML8GEUL3qOrSCd-XaFH7glkbqC0g_SC10,41655
16
+ pyerualjetwork/planeat.py,sha256=AjgCcemtzpgsuM9hndvRQpaDjRy9wOZpRMgWIFZ1k2o,41456
17
+ pyerualjetwork/planeat_cuda.py,sha256=_E2-xMcEqUus9SnefjD43FXutmVXt-HTFkQ3d_8q_wQ,41656
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=QaYSIyVkJZ8NqpBKArQKkI1y37nCQo_KIM98IMssnRc,28766
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=F60vQ92AXlMgBka3InXnOtGoM25vQJAlBIU2AlYTwks,29200
21
- pyerualjetwork-4.2.0b1.dist-info/METADATA,sha256=ozbvSqNZWZ6eYKJVSRtkZHxHao8TuC0s2VHV53tsh2I,7795
22
- pyerualjetwork-4.2.0b1.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
- pyerualjetwork-4.2.0b1.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
- pyerualjetwork-4.2.0b1.dist-info/RECORD,,
21
+ pyerualjetwork-4.2.0b2.dist-info/METADATA,sha256=UU939ACHKQTIXCt4YVsvV6iNtk3UPCCQCTk3nHU9WMc,7795
22
+ pyerualjetwork-4.2.0b2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
+ pyerualjetwork-4.2.0b2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
+ pyerualjetwork-4.2.0b2.dist-info/RECORD,,