pyerualjetwork 4.2.0b0__py3-none-any.whl → 4.2.0b2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/plan.py +2 -1
- pyerualjetwork/plan_cuda.py +2 -1
- pyerualjetwork/planeat.py +287 -236
- pyerualjetwork/planeat_cuda.py +417 -343
- {pyerualjetwork-4.2.0b0.dist-info → pyerualjetwork-4.2.0b2.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.2.0b0.dist-info → pyerualjetwork-4.2.0b2.dist-info}/RECORD +9 -9
- {pyerualjetwork-4.2.0b0.dist-info → pyerualjetwork-4.2.0b2.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.2.0b0.dist-info → pyerualjetwork-4.2.0b2.dist-info}/top_level.txt +0 -0
pyerualjetwork/planeat.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1
1
|
"""
|
2
2
|
MAIN MODULE FOR PLANEAT
|
3
3
|
|
4
|
+
Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
|
5
|
+
|
4
6
|
ANAPLAN document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
5
7
|
|
6
8
|
@author: Hasan Can Beydili
|
@@ -69,148 +71,195 @@ def define_genomes(input_shape, output_shape, population_size, dtype=np.float32)
|
|
69
71
|
return np.array(population_weights, dtype=dtype), population_activations
|
70
72
|
|
71
73
|
|
72
|
-
def evolver(weights,
|
74
|
+
def evolver(weights,
|
75
|
+
activation_potentiations,
|
76
|
+
what_gen,
|
77
|
+
fitness,
|
78
|
+
show_info=False,
|
79
|
+
policy='aggresive',
|
80
|
+
bad_genomes_selection_prob=None,
|
81
|
+
bar_status=True,
|
82
|
+
strategy='normal_selective',
|
83
|
+
target_fitness='max',
|
84
|
+
mutations=True,
|
85
|
+
bad_genomes_mutation_prob=None,
|
86
|
+
activation_mutate_prob=0.5,
|
87
|
+
save_best_genom=True,
|
88
|
+
fitness_bias=None,
|
89
|
+
cross_over_mode='tpm',
|
90
|
+
activation_mutate_add_prob=0.5,
|
91
|
+
activation_mutate_delete_prob=0.5,
|
92
|
+
activation_mutate_change_prob=0.5,
|
93
|
+
weight_mutate_prob=1,
|
94
|
+
weight_mutate_rate=32,
|
95
|
+
activation_selection_add_prob=0.6,
|
96
|
+
activation_selection_change_prob=0.4,
|
97
|
+
activation_selection_rate=2,
|
98
|
+
dtype=np.float32):
|
73
99
|
"""
|
74
|
-
Applies the evolving process of a population of genomes using selection, crossover, mutation, and activation function potentiation.
|
75
|
-
The function modifies the population's weights and activation functions based on a specified policy, mutation probabilities, and strategy.
|
100
|
+
Applies the evolving process of a population of genomes using selection, crossover, mutation, and activation function potentiation.
|
101
|
+
The function modifies the population's weights and activation functions based on a specified policy, mutation probabilities, and strategy.
|
76
102
|
|
77
|
-
|
78
|
-
|
79
|
-
(first returned value of define_genomes function)
|
80
|
-
|
81
|
-
activation_potentiations (list): A list of activation functions for each genome.
|
82
|
-
(second returned value of define_genomes function)
|
83
|
-
|
84
|
-
what_gen (int): The current generation number, used for informational purposes or logging.
|
85
|
-
|
86
|
-
fitness (numpy.ndarray): A 1D array containing the fitness values of each genome.
|
87
|
-
The array is used to rank the genomes based on their performance. PLANEAT maximizes or minimizes this fitness for looking 'target' hyperparameter.
|
88
|
-
|
89
|
-
show_info (bool, optional): If True, prints information about the current generation and the
|
90
|
-
maximum reward obtained. Also shows the current configuration. Default is False.
|
91
|
-
|
92
|
-
strategy (str, optional): The strategy for combining the best and bad genomes. Options:
|
93
|
-
- 'cross_over': Perform crossover between the best genomes and replace bad genomes.
|
94
|
-
(Classic NEAT crossover)
|
95
|
-
- 'potentiate': Cumulate the weight of the best genomes and replace bad genomes.
|
96
|
-
(PLAN feature, similar to arithmetic crossover but different.)
|
97
|
-
Default is 'cross_over'.
|
98
|
-
|
99
|
-
bar_status (bool, optional): Loading bar status during evolving process of genomes. True or False. Default: True
|
103
|
+
'selection' args effects cross-over.
|
104
|
+
'mutate' args effects mutation.
|
100
105
|
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
cross_over_mode (str, optional): Specifies the crossover method to use. Options:
|
124
|
-
- 'tpm': Two-Point Matrix Crossover
|
125
|
-
- 'plantic': plantic Crossover
|
126
|
-
Default is 'tpm'.
|
127
|
-
|
128
|
-
activation_add_prob (float, optional): The probability of adding a new activation function to the genome for mutation.
|
129
|
-
Must be in the range [0, 1]. Default is 0.5.
|
130
|
-
|
131
|
-
activation_delete_prob (float, optional): The probability of deleting an existing activation function
|
132
|
-
from the genome for mutation. Must be in the range [0, 1]. Default is 0.5.
|
133
|
-
|
134
|
-
activation_change_prob (float, optional): The probability of changing an activation function in the genome for mutation.
|
135
|
-
Must be in the range [0, 1]. Default is 0.5.
|
136
|
-
|
137
|
-
weight_mutate_prob (float, optional): The probability of mutating a weight in the genome.
|
138
|
-
Must be in the range [0, 1]. Default is 1.
|
139
|
-
|
140
|
-
weight_mutate_rate (int, optional): If the value you enter here is equal to the result of input layer * output layer,
|
141
|
-
only a single weight will be mutated during each mutation process. If the value you enter here is half
|
142
|
-
of the result of input layer * output layer, two weights in the weight matrix will be mutated.
|
143
|
-
WARNING: if you don't understand do NOT change this value. Default is 32.
|
106
|
+
Args:
|
107
|
+
weights (numpy.ndarray): Array of weights for each genome.
|
108
|
+
(first returned value of define_genomes function)
|
109
|
+
|
110
|
+
activation_potentiations (list): A list of activation functions for each genome.
|
111
|
+
(second returned value of define_genomes function)
|
112
|
+
|
113
|
+
what_gen (int): The current generation number, used for informational purposes or logging.
|
114
|
+
|
115
|
+
fitness (numpy.ndarray): A 1D array containing the fitness values of each genome.
|
116
|
+
The array is used to rank the genomes based on their performance. PLANEAT maximizes or minimizes this fitness based on the `target_fitness` parameter.
|
117
|
+
|
118
|
+
show_info (bool, optional): If True, prints information about the current generation and the
|
119
|
+
maximum reward obtained. Also shows the current configuration. Default is False.
|
120
|
+
|
121
|
+
strategy (str, optional): The strategy for combining the best and bad genomes. Options:
|
122
|
+
- 'normal_selective': Normal selection based on reward, where a portion of the bad genes are discarded.
|
123
|
+
- 'more_selective': A more selective strategy, where fewer bad genes survive.
|
124
|
+
- 'less_selective': A less selective strategy, where more bad genes survive.
|
125
|
+
Default is 'normal_selective'.
|
126
|
+
|
127
|
+
bar_status (bool, optional): Loading bar status during evolving process of genomes. True or False. Default: True
|
144
128
|
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
activation_selection_rate (int, optional): If the activation list of a good genome is smaller than the value entered here, only one activation will undergo a crossover operation. In other words, this parameter controls the model complexity. Default is 2.
|
152
|
-
|
153
|
-
dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
|
154
|
-
|
155
|
-
Raises:
|
156
|
-
ValueError:
|
157
|
-
- If `policy` is not one of the specified values ('normal_selective', 'more_selective', 'less_selective').
|
158
|
-
- If `cross_over_mode` is not one of the specified values ('tpm', 'plantic').
|
159
|
-
- If `bad_genomes_mutation_prob`, `activation_mutate_prob`, or other probability parameters are not in the range [0, 1].
|
160
|
-
- If the population size is odd (ensuring an even number of genomes is required for proper selection).
|
161
|
-
|
162
|
-
Returns:
|
163
|
-
tuple: A tuple containing:
|
164
|
-
- weights (numpy.ndarray): The updated weights for the population after selection, crossover, and mutation.
|
165
|
-
The shape is (population_size, output_shape, input_shape).
|
166
|
-
- activation_potentiations (list): The updated list of activation functions for the population.
|
167
|
-
|
168
|
-
Notes:
|
169
|
-
- **Selection Process**:
|
170
|
-
- The genomes are sorted by their fitness (based on `fitness`), and then split into "best" and "bad" halves.
|
171
|
-
- The best genomes are retained, and the bad genomes are modified based on the selected strategy.
|
172
|
-
|
173
|
-
- **Crossover and Potentiation Strategies**:
|
174
|
-
- The **'cross_over'** strategy performs crossover, where parts of the best genomes' weights are combined with the other good genomes to create new weight matrices.
|
175
|
-
- The **'potentiate'** strategy strengthens the best genomes by potentiating their weights towards the other good genomes.
|
176
|
-
|
177
|
-
- **Mutation**:
|
178
|
-
- Mutation is applied to both the best and bad genomes, depending on the mutation probability and the `policy`.
|
179
|
-
- `bad_genomes_mutation_prob` determines the probability of applying mutations to the bad genomes.
|
180
|
-
- If `activation_mutate_prob` is provided, activation function mutations are applied to the genomes based on this probability.
|
181
|
-
|
182
|
-
- **Population Size**: The population size must be an even number to properly split the best and bad genomes. If `fitness` has an odd length, an error is raised.
|
183
|
-
|
184
|
-
- **Logging**: If `show_info=True`, the current generation and the maximum reward from the population are printed for tracking the learning progress.
|
129
|
+
policy (str, optional): The selection policy that governs how genomes are selected for reproduction. Options:
|
130
|
+
|
131
|
+
- 'aggresive': Aggressive policy using very aggressive selection policy.
|
132
|
+
Advantages: fast training.
|
133
|
+
Disadvantages: may lead to fitness stuck in a local maximum or minimum.
|
185
134
|
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
135
|
+
- 'explorer': Explorer policy increases population diversity.
|
136
|
+
Advantages: fitness does not get stuck at local maximum or minimum.
|
137
|
+
Disadvantages: slow training.
|
138
|
+
|
139
|
+
Suggestions: Use hybrid and dynamic policy. When fitness appears stuck, switch to the 'explorer' policy.
|
140
|
+
|
141
|
+
Default: 'aggresive'.
|
142
|
+
|
143
|
+
target_fitness (str, optional): Target fitness strategy for PLANEAT optimization. ('max' maximizes fitness, 'min' minimizes fitness.) Default: 'max'.
|
144
|
+
|
145
|
+
fitness_bias (float, optional): Fitness bias must be a probability value between 0 and 1 that determines the effect of fitness on the crossover process. Default: Determined by the `strategy`.
|
146
|
+
|
147
|
+
mutations (bool, optional): If True, mutations are applied to the bad genomes and potentially
|
148
|
+
to the best genomes as well. Default is True.
|
149
|
+
|
150
|
+
bad_genomes_mutation_prob (float, optional): The probability of applying mutation to the bad genomes.
|
151
|
+
Must be in the range [0, 1]. Also affects the mutation probability of the best genomes inversely.
|
152
|
+
For example, a value of 0.7 for bad genomes implies 0.3 for best genomes. Default: Determined by `policy`.
|
153
|
+
|
154
|
+
activation_mutate_prob (float, optional): The probability of applying mutation to the activation functions.
|
155
|
+
Must be in the range [0, 1]. Default is 0.5 (50%).
|
156
|
+
|
157
|
+
save_best_genom (bool, optional): If True, ensures that the best genomes are saved and not mutated
|
158
|
+
or altered during reproduction. Default is True.
|
159
|
+
|
160
|
+
cross_over_mode (str, optional): Specifies the crossover method to use. Options:
|
161
|
+
- 'tpm': Two-Point Matrix Crossover.
|
162
|
+
Default is 'tpm'.
|
163
|
+
|
164
|
+
activation_mutate_add_prob (float, optional): The probability of adding a new activation function to the genome for mutation.
|
165
|
+
Must be in the range [0, 1]. Default is 0.5.
|
166
|
+
|
167
|
+
activation_mutate_delete_prob (float, optional): The probability of deleting an existing activation function
|
168
|
+
from the genome for mutation. Must be in the range [0, 1]. Default is 0.5.
|
169
|
+
|
170
|
+
activation_mutate_change_prob (float, optional): The probability of changing an activation function in the genome for mutation.
|
171
|
+
Must be in the range [0, 1]. Default is 0.5.
|
172
|
+
|
173
|
+
weight_mutate_prob (float, optional): The probability of mutating a weight in the genome.
|
174
|
+
Must be in the range [0, 1]. Default is 1.
|
175
|
+
|
176
|
+
weight_mutate_rate (int, optional): If the value entered here equals the result of input_layer * output_layer,
|
177
|
+
only a single weight will be mutated during each mutation process. If the value is half of the result,
|
178
|
+
two weights will be mutated. WARNING: If you don't understand, do NOT change this value. Default is 32.
|
179
|
+
|
180
|
+
activation_selection_add_prob (float, optional): The probability of adding an existing activation function for crossover.
|
181
|
+
Must be in the range [0, 1]. Default is 0.6. (WARNING! Higher values increase complexity. For faster training, increase this value.)
|
182
|
+
|
183
|
+
activation_selection_change_prob (float, optional): The probability of changing an activation function in the genome for crossover.
|
184
|
+
Must be in the range [0, 1]. Default is 0.4.
|
185
|
+
|
186
|
+
activation_selection_rate (int, optional): If the activation list of a good genome is smaller than this value, only one activation will undergo crossover. This parameter controls model complexity. Default is 2.
|
187
|
+
|
188
|
+
dtype (numpy.dtype): Data type for the arrays. Default: np.float32.
|
189
|
+
Example: np.float64 or np.float16 [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not recommended!].
|
190
|
+
|
191
|
+
Raises:
|
192
|
+
ValueError:
|
193
|
+
- If `policy` is not one of the specified values ('aggresive', 'explorer').
|
194
|
+
- If 'strategy' is not one of the specified values ('less_selective', 'normal_selective', 'more_selective')
|
195
|
+
- If `cross_over_mode` is not one of the specified values ('tpm').
|
196
|
+
- If `bad_genomes_mutation_prob`, `activation_mutate_prob`, or other probability parameters are not in the range 0 and 1.
|
197
|
+
- If the population size is odd (ensuring an even number of genomes is required for proper selection).
|
198
|
+
- If 'fitness_bias' value is not in range 0 and 1.
|
199
|
+
|
200
|
+
Returns:
|
201
|
+
tuple: A tuple containing:
|
202
|
+
- weights (numpy.ndarray): The updated weights for the population after selection, crossover, and mutation.
|
203
|
+
The shape is (population_size, output_shape, input_shape).
|
204
|
+
- activation_potentiations (list): The updated list of activation functions for the population.
|
205
|
+
|
206
|
+
Notes:
|
207
|
+
- **Selection Process**:
|
208
|
+
- The genomes are sorted by their fitness (based on `fitness`), and then split into "best" and "bad" halves.
|
209
|
+
- The best genomes are retained, and the bad genomes are modified based on the selected strategy.
|
210
|
+
|
211
|
+
- **Crossover Strategies**:
|
212
|
+
- The **'cross_over'** strategy performs crossover, where parts of the best genomes' weights are combined with other good genomes to create new weight matrices.
|
213
|
+
|
214
|
+
- **Mutation**:
|
215
|
+
- Mutation is applied to both the best and bad genomes, depending on the mutation probability and the `policy`.
|
216
|
+
- `bad_genomes_mutation_prob` determines the probability of applying mutations to the bad genomes.
|
217
|
+
- If `activation_mutate_prob` is provided, activation function mutations are applied to the genomes based on this probability.
|
218
|
+
|
219
|
+
- **Population Size**: The population size must be an even number to properly split the best and bad genomes. If `fitness` has an odd length, an error is raised.
|
220
|
+
|
221
|
+
- **Logging**: If `show_info=True`, the current generation and the maximum reward from the population are printed for tracking the learning progress.
|
222
|
+
|
223
|
+
Example:
|
224
|
+
```python
|
225
|
+
weights, activation_potentiations = planeat.evolver(weights, activation_potentiations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggresive')
|
226
|
+
```
|
227
|
+
|
228
|
+
- The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
|
229
|
+
"""
|
190
230
|
|
191
|
-
- The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
|
192
|
-
"""
|
193
|
-
|
194
231
|
### ERROR AND CONFIGURATION CHECKS:
|
195
232
|
|
196
|
-
if
|
197
|
-
if bad_genomes_mutation_prob is None: bad_genomes_mutation_prob = 0.7
|
198
|
-
if bad_genomes_selection_prob is None: bad_genomes_selection_prob = 0.25
|
233
|
+
if strategy == 'normal_selective':
|
234
|
+
if bad_genomes_mutation_prob is None: bad_genomes_mutation_prob = 0.7 # EFFECTS MUTATION
|
235
|
+
if bad_genomes_selection_prob is None: bad_genomes_selection_prob = 0.25 # EFFECTS CROSS-OVER
|
236
|
+
if fitness_bias is None: fitness_bias = 0.5 # The pressure applied by FITNESS to the CROSS-OVER
|
199
237
|
|
200
|
-
elif
|
201
|
-
if bad_genomes_mutation_prob is None: bad_genomes_mutation_prob = 0.85
|
202
|
-
if bad_genomes_selection_prob is None: bad_genomes_selection_prob = 0.1
|
238
|
+
elif strategy == 'more_selective':
|
239
|
+
if bad_genomes_mutation_prob is None: bad_genomes_mutation_prob = 0.85 # EFFECTS MUTATION
|
240
|
+
if bad_genomes_selection_prob is None: bad_genomes_selection_prob = 0.1 # EFFECTS CROSS-OVER
|
241
|
+
if fitness_bias is None: fitness_bias = 0.7 # The pressure applied by FITNESS to the CROSS-OVER
|
203
242
|
|
204
|
-
elif
|
205
|
-
if bad_genomes_mutation_prob is None: bad_genomes_mutation_prob = 0.6
|
206
|
-
if bad_genomes_selection_prob is None: bad_genomes_selection_prob = 0.5
|
243
|
+
elif strategy == 'less_selective':
|
244
|
+
if bad_genomes_mutation_prob is None: bad_genomes_mutation_prob = 0.6 # EFFECTS MUTATION
|
245
|
+
if bad_genomes_selection_prob is None: bad_genomes_selection_prob = 0.5 # EFFECTS CROSS-OVER
|
246
|
+
if fitness_bias is None: fitness_bias = 0.3 # The pressure applied by FITNESS to the CROSS-OVER
|
207
247
|
|
208
248
|
else:
|
209
|
-
raise ValueError("
|
210
|
-
|
249
|
+
raise ValueError("strategy parameter must be: 'normal_selective' or 'more_selective' or 'less_selective'")
|
211
250
|
|
212
|
-
if
|
251
|
+
if policy == 'explorer': fitness_bias = 0
|
252
|
+
|
253
|
+
if ((activation_mutate_add_prob < 0 or activation_mutate_add_prob > 1) or
|
254
|
+
(activation_mutate_change_prob < 0 or activation_mutate_change_prob > 1) or
|
255
|
+
(activation_mutate_delete_prob < 0 or activation_mutate_delete_prob > 1) or
|
256
|
+
(weight_mutate_prob < 0 or weight_mutate_prob > 1) or
|
257
|
+
(activation_selection_add_prob < 0 or activation_selection_add_prob > 1) or (
|
258
|
+
activation_selection_change_prob < 0 or activation_selection_change_prob > 1)):
|
259
|
+
|
213
260
|
raise ValueError("All hyperparameters ending with 'prob' must be a number between 0 and 1.")
|
261
|
+
|
262
|
+
if fitness_bias < 0 or fitness_bias > 1: raise ValueError("fitness_bias value must be a number between 0 and 1.")
|
214
263
|
|
215
264
|
if bad_genomes_mutation_prob is not None:
|
216
265
|
if not isinstance(bad_genomes_mutation_prob, float) or bad_genomes_mutation_prob < 0 or bad_genomes_mutation_prob > 1:
|
@@ -253,42 +302,44 @@ Example:
|
|
253
302
|
bar_format = loading_bars()[0]
|
254
303
|
|
255
304
|
if bar_status: progress = initialize_loading_bar(len(bad_weights), desc="GENERATION: " + str(what_gen), bar_format=bar_format, ncols=50)
|
256
|
-
normalized_fitness = normalization(fitness, dtype=dtype)
|
305
|
+
normalized_fitness = abs(normalization(fitness, dtype=dtype))
|
257
306
|
|
258
307
|
best_fitness = normalized_fitness[-1]
|
259
308
|
|
260
309
|
for i in range(len(bad_weights)):
|
261
310
|
second_parent_W, second_parent_act, s_i = second_parent_selection(good_weights, bad_weights, good_activations, bad_activations, bad_genomes_selection_prob)
|
262
311
|
|
263
|
-
if policy == '
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
312
|
+
if policy == 'aggresive':
|
313
|
+
bad_weights[i], bad_activations[i] = cross_over(best_weights,
|
314
|
+
second_parent_W,
|
315
|
+
best_activations,
|
316
|
+
second_parent_act,
|
317
|
+
cross_over_mode=cross_over_mode,
|
318
|
+
activation_selection_add_prob=activation_selection_add_prob,
|
319
|
+
activation_selection_change_prob=activation_selection_change_prob,
|
320
|
+
activation_selection_rate=activation_selection_rate,
|
321
|
+
bad_genomes_selection_prob=bad_genomes_selection_prob,
|
322
|
+
first_parent_fitness=best_fitness,
|
323
|
+
fitness_bias=fitness_bias,
|
324
|
+
second_parent_fitness=normalized_fitness[s_i]
|
325
|
+
)
|
326
|
+
elif policy == 'explorer':
|
327
|
+
bad_weights[i], bad_activations[i] = cross_over(good_weights[i],
|
328
|
+
second_parent_W,
|
329
|
+
good_activations[i],
|
330
|
+
second_parent_act,
|
331
|
+
cross_over_mode=cross_over_mode,
|
332
|
+
activation_selection_add_prob=activation_selection_add_prob,
|
333
|
+
activation_selection_change_prob=activation_selection_change_prob,
|
334
|
+
activation_selection_rate=activation_selection_rate,
|
335
|
+
bad_genomes_selection_prob=bad_genomes_selection_prob,
|
336
|
+
first_parent_fitness=normalized_fitness[i],
|
337
|
+
fitness_bias=fitness_bias,
|
338
|
+
second_parent_fitness=normalized_fitness[s_i]
|
339
|
+
)
|
291
340
|
|
341
|
+
else: raise ValueError("policy parameter must be: 'aggresive' or 'explorer'")
|
342
|
+
|
292
343
|
if mutations is True:
|
293
344
|
mutation_prob = random.uniform(0, 1)
|
294
345
|
|
@@ -297,23 +348,25 @@ Example:
|
|
297
348
|
good_weights[i], good_activations[i] = mutation(good_weights[i],
|
298
349
|
good_activations[i],
|
299
350
|
activation_mutate_prob=activation_mutate_prob,
|
300
|
-
activation_add_prob=
|
301
|
-
activation_delete_prob=
|
302
|
-
activation_change_prob=
|
351
|
+
activation_add_prob=activation_mutate_add_prob,
|
352
|
+
activation_delete_prob=activation_mutate_delete_prob,
|
353
|
+
activation_change_prob=activation_mutate_change_prob,
|
303
354
|
weight_mutate_prob=weight_mutate_prob,
|
304
|
-
threshold=weight_mutate_rate,
|
305
|
-
|
355
|
+
threshold=weight_mutate_rate,
|
356
|
+
genome_fitness=normalized_fitness[i]
|
357
|
+
)
|
306
358
|
|
307
359
|
elif mutation_prob < bad_genomes_mutation_prob:
|
308
360
|
bad_weights[i], bad_activations[i] = mutation(bad_weights[i],
|
309
361
|
bad_activations[i],
|
310
362
|
activation_mutate_prob=activation_mutate_prob,
|
311
|
-
activation_add_prob=
|
312
|
-
activation_delete_prob=
|
313
|
-
activation_change_prob=
|
363
|
+
activation_add_prob=activation_mutate_add_prob,
|
364
|
+
activation_delete_prob=activation_mutate_delete_prob,
|
365
|
+
activation_change_prob=activation_mutate_change_prob,
|
314
366
|
weight_mutate_prob=weight_mutate_prob,
|
315
367
|
threshold=weight_mutate_rate,
|
316
|
-
|
368
|
+
genome_fitness=normalized_fitness[i]
|
369
|
+
)
|
317
370
|
|
318
371
|
if bar_status: progress.update(1)
|
319
372
|
|
@@ -327,22 +380,21 @@ Example:
|
|
327
380
|
print("*** Configuration Settings ***")
|
328
381
|
print(" POPULATION SIZE: ", str(len(weights)))
|
329
382
|
print(" STRATEGY: ", strategy)
|
330
|
-
|
331
|
-
if strategy == 'cross_over':
|
332
|
-
print(" CROSS OVER MODE: ", cross_over_mode)
|
333
|
-
|
383
|
+
print(" CROSS OVER MODE: ", cross_over_mode)
|
334
384
|
print(" POLICY: ", policy)
|
335
385
|
print(" MUTATIONS: ", str(mutations))
|
336
386
|
print(" BAD GENOMES MUTATION PROB: ", str(bad_genomes_mutation_prob))
|
337
387
|
print(" GOOD GENOMES MUTATION PROB: ", str(round(1 - bad_genomes_mutation_prob, 2)))
|
388
|
+
print(" BAD GENOMES SELECTION PROB: ", str(bad_genomes_selection_prob))
|
338
389
|
print(" WEIGHT MUTATE PROB: ", str(weight_mutate_prob))
|
339
390
|
print(" WEIGHT MUTATE RATE (THRESHOLD VALUE FOR SINGLE MUTATION): ", str(weight_mutate_rate))
|
340
391
|
print(" ACTIVATION MUTATE PROB: ", str(activation_mutate_prob))
|
341
|
-
print(" ACTIVATION ADD PROB: ", str(
|
342
|
-
print(" ACTIVATION DELETE PROB: ", str(
|
343
|
-
print(" ACTIVATION CHANGE PROB: ", str(
|
392
|
+
print(" ACTIVATION MUTATE ADD PROB: ", str(activation_mutate_add_prob))
|
393
|
+
print(" ACTIVATION MUTATE DELETE PROB: ", str(activation_mutate_delete_prob))
|
394
|
+
print(" ACTIVATION MUTATE CHANGE PROB: ", str(activation_mutate_change_prob))
|
344
395
|
print(" ACTIVATION SELECTION ADD PROB: ", str(activation_selection_add_prob))
|
345
396
|
print(" ACTIVATION SELECTION CHANGE PROB: ", str(activation_selection_change_prob))
|
397
|
+
print(" FITNESS BIAS: ", str(fitness_bias))
|
346
398
|
print(" ACTIVATION SELECTION RATE (THRESHOLD VALUE FOR SINGLE CROSS OVER):", str(activation_selection_rate) + '\n')
|
347
399
|
|
348
400
|
print("*** Performance ***")
|
@@ -370,7 +422,7 @@ def evaluate(x_population, weights, activation_potentiations, rl_mode=False, dty
|
|
370
422
|
activation_potentiations (list or str): A list where each entry represents an activation function
|
371
423
|
or a potentiation strategy applied to each genome. If only one
|
372
424
|
activation function is used, this can be a single string.
|
373
|
-
rl_mode (bool, optional): If True, reinforcement learning mode is activated, this accepts x_population is a single
|
425
|
+
rl_mode (bool, optional): If True, reinforcement learning mode is activated, this accepts x_population is a single genome. (Also weights and activation_potentations a single genomes part.)
|
374
426
|
Default is False.
|
375
427
|
|
376
428
|
dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
|
@@ -395,7 +447,7 @@ def evaluate(x_population, weights, activation_potentiations, rl_mode=False, dty
|
|
395
447
|
outputs = evaluate(x_population, weights, activation_potentiations, rl_mode=False)
|
396
448
|
```
|
397
449
|
|
398
|
-
- The function returns a list of outputs after processing the population, where each element corresponds to
|
450
|
+
- The function returns a list of outputs after processing the population, where each element corresponds to
|
399
451
|
the output for each genome in `x_population`.
|
400
452
|
"""
|
401
453
|
|
@@ -438,9 +490,10 @@ def cross_over(first_parent_W,
|
|
438
490
|
activation_selection_rate,
|
439
491
|
bad_genomes_selection_prob,
|
440
492
|
first_parent_fitness,
|
441
|
-
second_parent_fitness
|
493
|
+
second_parent_fitness,
|
494
|
+
fitness_bias):
|
442
495
|
"""
|
443
|
-
Performs a
|
496
|
+
Performs a crossover operation on two sets of weights and activation functions.
|
444
497
|
This function combines two individuals (represented by their weights and activation functions)
|
445
498
|
to create a new individual by exchanging parts of their weight matrices and activation functions.
|
446
499
|
|
@@ -450,23 +503,44 @@ def cross_over(first_parent_W,
|
|
450
503
|
first_parent_act (str or list): The activation function(s) of the first individual.
|
451
504
|
second_parent_act (str or list): The activation function(s) of the second individual.
|
452
505
|
cross_over_mode (str): Determines the crossover method to be used. Options:
|
453
|
-
|
454
|
-
|
506
|
+
- 'tpm': Two-Point Matrix Crossover, where sub-matrices of weights are swapped between parents.
|
507
|
+
activation_selection_add_prob (float): Probability of adding new activation functions
|
508
|
+
from the second parent to the child genome.
|
509
|
+
activation_selection_change_prob (float): Probability of replacing an activation function in the child genome
|
510
|
+
with one from the second parent.
|
511
|
+
activation_selection_rate (float): Determines how quickly activation functions are added or replaced
|
512
|
+
during the crossover process.
|
513
|
+
bad_genomes_selection_prob (float): Probability of selecting a "bad" genome for replacement with the offspring.
|
514
|
+
first_parent_fitness (float): Fitness score of the first parent.
|
515
|
+
second_parent_fitness (float): Fitness score of the second parent.
|
516
|
+
fitness_bias (float): A bias factor used to favor fitter parents during crossover operations.
|
517
|
+
|
455
518
|
Returns:
|
456
519
|
tuple: A tuple containing:
|
457
|
-
-
|
458
|
-
-
|
520
|
+
- child_W (numpy.ndarray): The weight matrix of the new individual created by crossover.
|
521
|
+
- child_act (list): The list of activation functions of the new individual created by crossover.
|
459
522
|
|
460
523
|
Notes:
|
461
524
|
- The crossover is performed based on the selected `cross_over_mode`.
|
462
|
-
|
463
|
-
-
|
464
|
-
- If the activation functions are passed as strings, they are converted to lists for uniform handling.
|
465
|
-
- The resulting activation functions depend on the crossover method and the parent's configuration.
|
525
|
+
- In 'tpm' mode, random sub-matrices from the parent weight matrices are swapped.
|
526
|
+
- Activation functions from both parents are combined using the probabilities and rates provided.
|
466
527
|
|
467
528
|
Example:
|
468
529
|
```python
|
469
|
-
new_weights, new_activations = cross_over(
|
530
|
+
new_weights, new_activations = cross_over(
|
531
|
+
first_parent_W=parent1_weights,
|
532
|
+
second_parent_W=parent2_weights,
|
533
|
+
first_parent_act=parent1_activations,
|
534
|
+
second_parent_act=parent2_activations,
|
535
|
+
cross_over_mode='tpm',
|
536
|
+
activation_selection_add_prob=0.8,
|
537
|
+
activation_selection_change_prob=0.5,
|
538
|
+
activation_selection_rate=0.1,
|
539
|
+
bad_genomes_selection_prob=0.7,
|
540
|
+
first_parent_fitness=0.9,
|
541
|
+
second_parent_fitness=0.85,
|
542
|
+
fitness_bias=0.6
|
543
|
+
)
|
470
544
|
```
|
471
545
|
"""
|
472
546
|
|
@@ -488,7 +562,7 @@ def cross_over(first_parent_W,
|
|
488
562
|
|
489
563
|
undominant_parent_W = np.copy(second_parent_W)
|
490
564
|
undominant_parent_act = second_parent_act
|
491
|
-
succes =
|
565
|
+
succes = second_parent_fitness
|
492
566
|
|
493
567
|
elif decision == 'second_parent':
|
494
568
|
dominant_parent_W = np.copy(second_parent_W)
|
@@ -496,7 +570,7 @@ def cross_over(first_parent_W,
|
|
496
570
|
|
497
571
|
undominant_parent_W = np.copy(first_parent_W)
|
498
572
|
undominant_parent_act = first_parent_act
|
499
|
-
succes =
|
573
|
+
succes = first_parent_fitness
|
500
574
|
|
501
575
|
while True:
|
502
576
|
|
@@ -511,11 +585,14 @@ def cross_over(first_parent_W,
|
|
511
585
|
(((row_cut_end + 1) - (row_cut_start + 1) * 2) + ((col_cut_end + 1) - (col_cut_start + 1) * 2) <= half_of_gene)):
|
512
586
|
break
|
513
587
|
|
514
|
-
|
515
|
-
|
588
|
+
selection_bias = random.uniform(0, 1)
|
589
|
+
|
590
|
+
if fitness_bias > selection_bias:
|
591
|
+
row_cut_start = math.floor(row_cut_start * succes)
|
592
|
+
row_cut_end = math.ceil(row_cut_end * succes)
|
516
593
|
|
517
|
-
|
518
|
-
|
594
|
+
col_cut_start = math.floor(col_cut_start * succes)
|
595
|
+
col_cut_end = math.ceil(col_cut_end * succes)
|
519
596
|
|
520
597
|
child_W = dominant_parent_W
|
521
598
|
|
@@ -575,7 +652,15 @@ def cross_over(first_parent_W,
|
|
575
652
|
|
576
653
|
return child_W, child_act
|
577
654
|
|
578
|
-
def mutation(weight,
|
655
|
+
def mutation(weight,
|
656
|
+
activations,
|
657
|
+
activation_mutate_prob,
|
658
|
+
activation_add_prob,
|
659
|
+
activation_delete_prob,
|
660
|
+
activation_change_prob,
|
661
|
+
weight_mutate_prob,
|
662
|
+
threshold,
|
663
|
+
genome_fitness):
|
579
664
|
"""
|
580
665
|
Performs mutation on the given weight matrix and activation functions.
|
581
666
|
- The weight matrix is mutated by randomly changing its values based on the mutation probability.
|
@@ -590,8 +675,7 @@ def mutation(weight, activations, activation_mutate_prob, activation_add_prob, a
|
|
590
675
|
activation_change_prob (float): Probability of replacing an existing activation function with a new one.
|
591
676
|
weight_mutate_prob (float): The probability of mutating weight matrix.
|
592
677
|
threshold (float): If the value you enter here is equal to the result of input layer * output layer, only a single weight will be mutated during each mutation process. If the value you enter here is half of the result of input layer * output layer, two weights in the weight matrix will be mutated.
|
593
|
-
|
594
|
-
|
678
|
+
genome_fitness (float): Fitness value of genome
|
595
679
|
Returns:
|
596
680
|
tuple: A tuple containing:
|
597
681
|
- mutated_weight (numpy.ndarray): The weight matrix after mutation.
|
@@ -609,8 +693,7 @@ def mutation(weight, activations, activation_mutate_prob, activation_add_prob, a
|
|
609
693
|
the optimization process.
|
610
694
|
"""
|
611
695
|
|
612
|
-
if isinstance(activations, str):
|
613
|
-
activations = [activations]
|
696
|
+
if isinstance(activations, str): activations = [activations]
|
614
697
|
|
615
698
|
weight_mutate_prob = 1 - weight_mutate_prob # if prob 0.8 (%80) then 1 - 0.8. Because 0-1 random number probably greater than 0.2
|
616
699
|
potential_weight_mutation = random.uniform(0, 1)
|
@@ -620,6 +703,8 @@ def mutation(weight, activations, activation_mutate_prob, activation_add_prob, a
|
|
620
703
|
start = 0
|
621
704
|
row_end = weight.shape[0]
|
622
705
|
col_end = weight.shape[1]
|
706
|
+
|
707
|
+
threshold = threshold * genome_fitness
|
623
708
|
new_threshold = threshold
|
624
709
|
|
625
710
|
while True:
|
@@ -658,13 +743,7 @@ def mutation(weight, activations, activation_mutate_prob, activation_add_prob, a
|
|
658
743
|
|
659
744
|
random_index_all_act = int(random.uniform(0, len(all_acts)-1))
|
660
745
|
activations.append(all_acts[random_index_all_act])
|
661
|
-
|
662
|
-
for i in range(weight.shape[0]):
|
663
746
|
|
664
|
-
weight[i,:] = apply_activation(weight[i,:], activations[-1])
|
665
|
-
|
666
|
-
weight = normalization(weight, dtype=dtype)
|
667
|
-
|
668
747
|
except:
|
669
748
|
|
670
749
|
activation = activations
|
@@ -673,24 +752,10 @@ def mutation(weight, activations, activation_mutate_prob, activation_add_prob, a
|
|
673
752
|
activations.append(activation)
|
674
753
|
activations.append(all_acts[int(random.uniform(0, len(all_acts)-1))])
|
675
754
|
|
676
|
-
for i in range(weight.shape[0]):
|
677
|
-
|
678
|
-
weight[i,:] = apply_activation(weight[i,:], activations[-1])
|
679
|
-
|
680
|
-
weight = normalization(weight, dtype=dtype)
|
681
|
-
|
682
755
|
if potential_activation_delete_prob > activation_delete_prob and len(activations) > 1:
|
683
756
|
|
684
757
|
random_index = random.randint(0, len(activations) - 1)
|
685
|
-
|
686
|
-
wc = np.copy(weight)
|
687
|
-
for i in range(weight.shape[0]):
|
688
|
-
|
689
|
-
wc[i,:] = apply_activation(wc[i,:], activations[random_index])
|
690
|
-
weight[i,:] -= wc[i,:]
|
691
|
-
|
692
758
|
activations.pop(random_index)
|
693
|
-
weight = normalization(weight, dtype=dtype)
|
694
759
|
|
695
760
|
|
696
761
|
if potential_activation_change_prob > activation_change_prob:
|
@@ -700,36 +765,22 @@ def mutation(weight, activations, activation_mutate_prob, activation_add_prob, a
|
|
700
765
|
|
701
766
|
activations[random_index_genom_act] = all_acts[random_index_all_act]
|
702
767
|
|
703
|
-
wc = np.copy(weight)
|
704
|
-
for i in range(weight.shape[0]):
|
705
|
-
|
706
|
-
wc[i,:] = apply_activation(wc[i,:], activations[random_index_genom_act])
|
707
|
-
weight[i,:] -= wc[i,:]
|
708
|
-
|
709
|
-
weight = normalization(weight, dtype=dtype)
|
710
|
-
|
711
|
-
for i in range(weight.shape[0]):
|
712
|
-
|
713
|
-
weight[i,:] = apply_activation(weight[i,:], activations[random_index_genom_act])
|
714
|
-
|
715
|
-
weight = normalization(weight, dtype=dtype)
|
716
|
-
|
717
768
|
return weight, activations
|
718
769
|
|
719
|
-
def second_parent_selection(
|
770
|
+
def second_parent_selection(good_weights, bad_weights, good_activations, bad_activations, bad_genomes_selection_prob):
|
720
771
|
|
721
772
|
selection_prob = random.uniform(0, 1)
|
722
|
-
random_index = int(random.uniform(0, len(
|
773
|
+
random_index = int(random.uniform(0, len(good_weights) - 1))
|
723
774
|
|
724
775
|
if selection_prob > bad_genomes_selection_prob:
|
725
|
-
second_selected_W =
|
726
|
-
second_selected_act =
|
776
|
+
second_selected_W = good_weights[random_index]
|
777
|
+
second_selected_act = good_activations[random_index]
|
727
778
|
|
728
779
|
else:
|
729
780
|
second_selected_W = bad_weights[random_index]
|
730
781
|
second_selected_act = bad_activations[random_index]
|
731
782
|
|
732
|
-
|
783
|
+
return second_selected_W, second_selected_act, random_index
|
733
784
|
|
734
785
|
def dominant_parent_selection(bad_genomes_selection_prob):
|
735
786
|
|