pyerualjetwork 4.1.9b1__py3-none-any.whl → 4.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/data_operations.py +1 -1
- pyerualjetwork/plan.py +3 -11
- pyerualjetwork/plan_cuda.py +2 -1
- pyerualjetwork/planeat.py +417 -342
- pyerualjetwork/planeat_cuda.py +422 -341
- {pyerualjetwork-4.1.9b1.dist-info → pyerualjetwork-4.2.0.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.1.9b1.dist-info → pyerualjetwork-4.2.0.dist-info}/RECORD +10 -10
- {pyerualjetwork-4.1.9b1.dist-info → pyerualjetwork-4.2.0.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.1.9b1.dist-info → pyerualjetwork-4.2.0.dist-info}/top_level.txt +0 -0
pyerualjetwork/planeat.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1
1
|
"""
|
2
2
|
MAIN MODULE FOR PLANEAT
|
3
3
|
|
4
|
+
Examples: https://github.com/HCB06/PyerualJetwork/tree/main/Welcome_to_PyerualJetwork/ExampleCodes
|
5
|
+
|
4
6
|
ANAPLAN document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/ANAPLAN_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf
|
5
7
|
|
6
8
|
@author: Hasan Can Beydili
|
@@ -12,7 +14,7 @@ ANAPLAN document: https://github.com/HCB06/Anaplan/blob/main/Welcome_to_Anaplan/
|
|
12
14
|
|
13
15
|
import numpy as np
|
14
16
|
import random
|
15
|
-
|
17
|
+
import math
|
16
18
|
|
17
19
|
### LIBRARY IMPORTS ###
|
18
20
|
from .plan import feed_forward
|
@@ -69,155 +71,199 @@ def define_genomes(input_shape, output_shape, population_size, dtype=np.float32)
|
|
69
71
|
return np.array(population_weights, dtype=dtype), population_activations
|
70
72
|
|
71
73
|
|
72
|
-
def
|
74
|
+
def evolver(weights,
|
75
|
+
activation_potentiations,
|
76
|
+
what_gen,
|
77
|
+
fitness,
|
78
|
+
show_info=False,
|
79
|
+
policy='aggressive',
|
80
|
+
bad_genomes_selection_prob=None,
|
81
|
+
bar_status=True,
|
82
|
+
strategy='normal_selective',
|
83
|
+
target_fitness='max',
|
84
|
+
mutations=True,
|
85
|
+
bad_genomes_mutation_prob=None,
|
86
|
+
activation_mutate_prob=0.5,
|
87
|
+
save_best_genom=True,
|
88
|
+
fitness_bias=None,
|
89
|
+
cross_over_mode='tpm',
|
90
|
+
activation_mutate_add_prob=0.5,
|
91
|
+
activation_mutate_delete_prob=0.5,
|
92
|
+
activation_mutate_change_prob=0.5,
|
93
|
+
weight_mutate_prob=1,
|
94
|
+
weight_mutate_rate=32,
|
95
|
+
activation_selection_add_prob=0.6,
|
96
|
+
activation_selection_change_prob=0.4,
|
97
|
+
activation_selection_rate=2,
|
98
|
+
dtype=np.float32):
|
73
99
|
"""
|
74
|
-
Applies the evolving process of a population of genomes using selection, crossover, mutation, and activation function potentiation.
|
75
|
-
The function modifies the population's weights and activation functions based on a specified policy, mutation probabilities, and strategy.
|
100
|
+
Applies the evolving process of a population of genomes using selection, crossover, mutation, and activation function potentiation.
|
101
|
+
The function modifies the population's weights and activation functions based on a specified policy, mutation probabilities, and strategy.
|
76
102
|
|
77
|
-
|
78
|
-
|
79
|
-
(first returned value of define_genomes function)
|
80
|
-
|
81
|
-
activation_potentiations (list): A list of activation functions for each genome.
|
82
|
-
(second returned value of define_genomes function)
|
83
|
-
|
84
|
-
what_gen (int): The current generation number, used for informational purposes or logging.
|
85
|
-
|
86
|
-
fitness (numpy.ndarray): A 1D array containing the fitness values of each genome.
|
87
|
-
The array is used to rank the genomes based on their performance. PLANEAT maximizes or minimizes this fitness for looking 'target' hyperparameter.
|
88
|
-
|
89
|
-
show_info (bool, optional): If True, prints information about the current generation and the
|
90
|
-
maximum reward obtained. Also shows the current configuration. Default is False.
|
91
|
-
|
92
|
-
strategy (str, optional): The strategy for combining the best and bad genomes. Options:
|
93
|
-
- 'cross_over': Perform crossover between the best genomes and replace bad genomes.
|
94
|
-
(Classic NEAT crossover)
|
95
|
-
- 'potentiate': Cumulate the weight of the best genomes and replace bad genomes.
|
96
|
-
(PLAN feature, similar to arithmetic crossover but different.)
|
97
|
-
Default is 'cross_over'.
|
98
|
-
|
99
|
-
bar_status (bool, optional): Loading bar status during evolving process of genomes. True or False. Default: True
|
103
|
+
'selection' args effects cross-over.
|
104
|
+
'mutate' args effects mutation.
|
100
105
|
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
cross_over_mode (str, optional): Specifies the crossover method to use. Options:
|
124
|
-
- 'tpm': Two-Point Matrix Crossover
|
125
|
-
- 'plantic': plantic Crossover
|
126
|
-
Default is 'tpm'.
|
127
|
-
|
128
|
-
activation_add_prob (float, optional): The probability of adding a new activation function to the genome for mutation.
|
129
|
-
Must be in the range [0, 1]. Default is 0.5.
|
130
|
-
|
131
|
-
activation_delete_prob (float, optional): The probability of deleting an existing activation function
|
132
|
-
from the genome for mutation. Must be in the range [0, 1]. Default is 0.5.
|
133
|
-
|
134
|
-
activation_change_prob (float, optional): The probability of changing an activation function in the genome for mutation.
|
135
|
-
Must be in the range [0, 1]. Default is 0.5.
|
136
|
-
|
137
|
-
weight_mutate_prob (float, optional): The probability of mutating a weight in the genome.
|
138
|
-
Must be in the range [0, 1]. Default is 1.
|
139
|
-
|
140
|
-
weight_mutate_rate (int, optional): If the value you enter here is equal to the result of input layer * output layer,
|
141
|
-
only a single weight will be mutated during each mutation process. If the value you enter here is half
|
142
|
-
of the result of input layer * output layer, two weights in the weight matrix will be mutated.
|
143
|
-
WARNING: if you don't understand do NOT change this value. Default is 32.
|
106
|
+
Args:
|
107
|
+
weights (numpy.ndarray): Array of weights for each genome.
|
108
|
+
(first returned value of define_genomes function)
|
109
|
+
|
110
|
+
activation_potentiations (list): A list of activation functions for each genome.
|
111
|
+
(second returned value of define_genomes function)
|
112
|
+
|
113
|
+
what_gen (int): The current generation number, used for informational purposes or logging.
|
114
|
+
|
115
|
+
fitness (numpy.ndarray): A 1D array containing the fitness values of each genome.
|
116
|
+
The array is used to rank the genomes based on their performance. PLANEAT maximizes or minimizes this fitness based on the `target_fitness` parameter.
|
117
|
+
|
118
|
+
show_info (bool, optional): If True, prints information about the current generation and the
|
119
|
+
maximum reward obtained. Also shows the current configuration. Default is False.
|
120
|
+
|
121
|
+
strategy (str, optional): The strategy for combining the best and bad genomes. Options:
|
122
|
+
- 'normal_selective': Normal selection based on reward, where a portion of the bad genes are discarded.
|
123
|
+
- 'more_selective': A more selective strategy, where fewer bad genes survive.
|
124
|
+
- 'less_selective': A less selective strategy, where more bad genes survive.
|
125
|
+
Default is 'normal_selective'.
|
126
|
+
|
127
|
+
bar_status (bool, optional): Loading bar status during evolving process of genomes. True or False. Default: True
|
144
128
|
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
activation_selection_rate (int, optional): If the activation list of a good genome is smaller than the value entered here, only one activation will undergo a crossover operation. In other words, this parameter controls the model complexity. Default is 2.
|
152
|
-
|
153
|
-
dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
|
154
|
-
|
155
|
-
Raises:
|
156
|
-
ValueError:
|
157
|
-
- If `policy` is not one of the specified values ('normal_selective', 'more_selective', 'less_selective').
|
158
|
-
- If `cross_over_mode` is not one of the specified values ('tpm', 'plantic').
|
159
|
-
- If `bad_genoms_mutation_prob`, `activation_mutate_prob`, or other probability parameters are not in the range [0, 1].
|
160
|
-
- If the population size is odd (ensuring an even number of genomes is required for proper selection).
|
161
|
-
|
162
|
-
Returns:
|
163
|
-
tuple: A tuple containing:
|
164
|
-
- weights (numpy.ndarray): The updated weights for the population after selection, crossover, and mutation.
|
165
|
-
The shape is (population_size, output_shape, input_shape).
|
166
|
-
- activation_potentiations (list): The updated list of activation functions for the population.
|
167
|
-
|
168
|
-
Notes:
|
169
|
-
- **Selection Process**:
|
170
|
-
- The genomes are sorted by their fitness (based on `fitness`), and then split into "best" and "bad" halves.
|
171
|
-
- The best genomes are retained, and the bad genomes are modified based on the selected strategy.
|
172
|
-
|
173
|
-
- **Crossover and Potentiation Strategies**:
|
174
|
-
- The **'cross_over'** strategy performs crossover, where parts of the best genomes' weights are combined with the other good genomes to create new weight matrices.
|
175
|
-
- The **'potentiate'** strategy strengthens the best genomes by potentiating their weights towards the other good genomes.
|
176
|
-
|
177
|
-
- **Mutation**:
|
178
|
-
- Mutation is applied to both the best and bad genomes, depending on the mutation probability and the `policy`.
|
179
|
-
- `bad_genoms_mutation_prob` determines the probability of applying mutations to the bad genomes.
|
180
|
-
- If `activation_mutate_prob` is provided, activation function mutations are applied to the genomes based on this probability.
|
181
|
-
|
182
|
-
- **Population Size**: The population size must be an even number to properly split the best and bad genomes. If `fitness` has an odd length, an error is raised.
|
183
|
-
|
184
|
-
- **Logging**: If `show_info=True`, the current generation and the maximum reward from the population are printed for tracking the learning progress.
|
129
|
+
policy (str, optional): The selection policy that governs how genomes are selected for reproduction. Options:
|
130
|
+
|
131
|
+
- 'aggressive': Aggressive policy using very aggressive selection policy.
|
132
|
+
Advantages: fast training.
|
133
|
+
Disadvantages: may lead to fitness stuck in a local maximum or minimum.
|
185
134
|
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
135
|
+
- 'explorer': Explorer policy increases population diversity.
|
136
|
+
Advantages: fitness does not get stuck at local maximum or minimum.
|
137
|
+
Disadvantages: slow training.
|
138
|
+
|
139
|
+
Suggestions: Use hybrid and dynamic policy. When fitness appears stuck, switch to the 'explorer' policy.
|
140
|
+
|
141
|
+
Default: 'aggressive'.
|
142
|
+
|
143
|
+
target_fitness (str, optional): Target fitness strategy for PLANEAT optimization. ('max' maximizes fitness, 'min' minimizes fitness.) Default: 'max'.
|
144
|
+
|
145
|
+
fitness_bias (float, optional): Fitness bias must be a probability value between 0 and 1 that determines the effect of fitness on the crossover process. Default: Determined by the `strategy`.
|
146
|
+
|
147
|
+
mutations (bool, optional): If True, mutations are applied to the bad genomes and potentially
|
148
|
+
to the best genomes as well. Default is True.
|
149
|
+
|
150
|
+
bad_genomes_mutation_prob (float, optional): The probability of applying mutation to the bad genomes.
|
151
|
+
Must be in the range [0, 1]. Also affects the mutation probability of the best genomes inversely.
|
152
|
+
For example, a value of 0.7 for bad genomes implies 0.3 for best genomes. Default: Determined by `policy`.
|
153
|
+
|
154
|
+
activation_mutate_prob (float, optional): The probability of applying mutation to the activation functions.
|
155
|
+
Must be in the range [0, 1]. Default is 0.5 (50%).
|
156
|
+
|
157
|
+
save_best_genom (bool, optional): If True, ensures that the best genomes are saved and not mutated
|
158
|
+
or altered during reproduction. Default is True.
|
159
|
+
|
160
|
+
cross_over_mode (str, optional): Specifies the crossover method to use. Options:
|
161
|
+
- 'tpm': Two-Point Matrix Crossover.
|
162
|
+
Default is 'tpm'.
|
163
|
+
|
164
|
+
activation_mutate_add_prob (float, optional): The probability of adding a new activation function to the genome for mutation.
|
165
|
+
Must be in the range [0, 1]. Default is 0.5.
|
166
|
+
|
167
|
+
activation_mutate_delete_prob (float, optional): The probability of deleting an existing activation function
|
168
|
+
from the genome for mutation. Must be in the range [0, 1]. Default is 0.5.
|
169
|
+
|
170
|
+
activation_mutate_change_prob (float, optional): The probability of changing an activation function in the genome for mutation.
|
171
|
+
Must be in the range [0, 1]. Default is 0.5.
|
172
|
+
|
173
|
+
weight_mutate_prob (float, optional): The probability of mutating a weight in the genome.
|
174
|
+
Must be in the range [0, 1]. Default is 1.
|
175
|
+
|
176
|
+
weight_mutate_rate (int, optional): If the value entered here equals the result of input_layer * output_layer,
|
177
|
+
only a single weight will be mutated during each mutation process. If the value is half of the result,
|
178
|
+
two weights will be mutated. WARNING: If you don't understand, do NOT change this value. Default is 32.
|
179
|
+
|
180
|
+
activation_selection_add_prob (float, optional): The probability of adding an existing activation function for crossover.
|
181
|
+
Must be in the range [0, 1]. Default is 0.6. (WARNING! Higher values increase complexity. For faster training, increase this value.)
|
182
|
+
|
183
|
+
activation_selection_change_prob (float, optional): The probability of changing an activation function in the genome for crossover.
|
184
|
+
Must be in the range [0, 1]. Default is 0.4.
|
185
|
+
|
186
|
+
activation_selection_rate (int, optional): If the activation list of a good genome is smaller than this value, only one activation will undergo crossover. This parameter controls model complexity. Default is 2.
|
187
|
+
|
188
|
+
dtype (numpy.dtype): Data type for the arrays. Default: np.float32.
|
189
|
+
Example: np.float64 or np.float16 [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not recommended!].
|
190
|
+
|
191
|
+
Raises:
|
192
|
+
ValueError:
|
193
|
+
- If `policy` is not one of the specified values ('aggressive', 'explorer').
|
194
|
+
- If 'strategy' is not one of the specified values ('less_selective', 'normal_selective', 'more_selective')
|
195
|
+
- If `cross_over_mode` is not one of the specified values ('tpm').
|
196
|
+
- If `bad_genomes_mutation_prob`, `activation_mutate_prob`, or other probability parameters are not in the range 0 and 1.
|
197
|
+
- If the population size is odd (ensuring an even number of genomes is required for proper selection).
|
198
|
+
- If 'fitness_bias' value is not in range 0 and 1.
|
199
|
+
|
200
|
+
Returns:
|
201
|
+
tuple: A tuple containing:
|
202
|
+
- weights (numpy.ndarray): The updated weights for the population after selection, crossover, and mutation.
|
203
|
+
The shape is (population_size, output_shape, input_shape).
|
204
|
+
- activation_potentiations (list): The updated list of activation functions for the population.
|
205
|
+
|
206
|
+
Notes:
|
207
|
+
- **Selection Process**:
|
208
|
+
- The genomes are sorted by their fitness (based on `fitness`), and then split into "best" and "bad" halves.
|
209
|
+
- The best genomes are retained, and the bad genomes are modified based on the selected strategy.
|
210
|
+
|
211
|
+
- **Crossover Strategies**:
|
212
|
+
- The **'cross_over'** strategy performs crossover, where parts of the best genomes' weights are combined with other good genomes to create new weight matrices.
|
213
|
+
|
214
|
+
- **Mutation**:
|
215
|
+
- Mutation is applied to both the best and bad genomes, depending on the mutation probability and the `policy`.
|
216
|
+
- `bad_genomes_mutation_prob` determines the probability of applying mutations to the bad genomes.
|
217
|
+
- If `activation_mutate_prob` is provided, activation function mutations are applied to the genomes based on this probability.
|
218
|
+
|
219
|
+
- **Population Size**: The population size must be an even number to properly split the best and bad genomes. If `fitness` has an odd length, an error is raised.
|
220
|
+
|
221
|
+
- **Logging**: If `show_info=True`, the current generation and the maximum reward from the population are printed for tracking the learning progress.
|
222
|
+
|
223
|
+
Example:
|
224
|
+
```python
|
225
|
+
weights, activation_potentiations = planeat.evolver(weights, activation_potentiations, 1, fitness, show_info=True, strategy='normal_selective', policy='aggressive')
|
226
|
+
```
|
227
|
+
|
228
|
+
- The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
|
229
|
+
"""
|
190
230
|
|
191
|
-
- The function returns the updated weights and activations after processing based on the chosen strategy, policy, and mutation parameters.
|
192
|
-
"""
|
193
|
-
|
194
231
|
### ERROR AND CONFIGURATION CHECKS:
|
195
232
|
|
196
|
-
if
|
197
|
-
if
|
198
|
-
|
233
|
+
if strategy == 'normal_selective':
|
234
|
+
if bad_genomes_mutation_prob is None: bad_genomes_mutation_prob = 0.7 # EFFECTS MUTATION
|
235
|
+
if bad_genomes_selection_prob is None: bad_genomes_selection_prob = 0.25 # EFFECTS CROSS-OVER
|
236
|
+
if fitness_bias is None: fitness_bias = 0.5 # The pressure applied by FITNESS to the CROSS-OVER
|
199
237
|
|
200
|
-
elif
|
201
|
-
if
|
202
|
-
|
238
|
+
elif strategy == 'more_selective':
|
239
|
+
if bad_genomes_mutation_prob is None: bad_genomes_mutation_prob = 0.85 # EFFECTS MUTATION
|
240
|
+
if bad_genomes_selection_prob is None: bad_genomes_selection_prob = 0.1 # EFFECTS CROSS-OVER
|
241
|
+
if fitness_bias is None: fitness_bias = 0.7 # The pressure applied by FITNESS to the CROSS-OVER
|
203
242
|
|
204
|
-
elif
|
205
|
-
if
|
206
|
-
|
243
|
+
elif strategy == 'less_selective':
|
244
|
+
if bad_genomes_mutation_prob is None: bad_genomes_mutation_prob = 0.6 # EFFECTS MUTATION
|
245
|
+
if bad_genomes_selection_prob is None: bad_genomes_selection_prob = 0.5 # EFFECTS CROSS-OVER
|
246
|
+
if fitness_bias is None: fitness_bias = 0.3 # The pressure applied by FITNESS to the CROSS-OVER
|
207
247
|
|
208
248
|
else:
|
209
|
-
raise ValueError("
|
210
|
-
|
249
|
+
raise ValueError("strategy parameter must be: 'normal_selective' or 'more_selective' or 'less_selective'")
|
211
250
|
|
212
|
-
if
|
251
|
+
if policy == 'explorer': fitness_bias = 0
|
252
|
+
|
253
|
+
if ((activation_mutate_add_prob < 0 or activation_mutate_add_prob > 1) or
|
254
|
+
(activation_mutate_change_prob < 0 or activation_mutate_change_prob > 1) or
|
255
|
+
(activation_mutate_delete_prob < 0 or activation_mutate_delete_prob > 1) or
|
256
|
+
(weight_mutate_prob < 0 or weight_mutate_prob > 1) or
|
257
|
+
(activation_selection_add_prob < 0 or activation_selection_add_prob > 1) or (
|
258
|
+
activation_selection_change_prob < 0 or activation_selection_change_prob > 1)):
|
259
|
+
|
213
260
|
raise ValueError("All hyperparameters ending with 'prob' must be a number between 0 and 1.")
|
261
|
+
|
262
|
+
if fitness_bias < 0 or fitness_bias > 1: raise ValueError("fitness_bias value must be a number between 0 and 1.")
|
214
263
|
|
215
|
-
if
|
216
|
-
|
217
|
-
|
218
|
-
if bad_genoms_mutation_prob is not None:
|
219
|
-
if not isinstance(bad_genoms_mutation_prob, float) or bad_genoms_mutation_prob < 0 or bad_genoms_mutation_prob > 1:
|
220
|
-
raise ValueError("bad_genoms_mutation_prob parameter must be float and 0-1 range")
|
264
|
+
if bad_genomes_mutation_prob is not None:
|
265
|
+
if not isinstance(bad_genomes_mutation_prob, float) or bad_genomes_mutation_prob < 0 or bad_genomes_mutation_prob > 1:
|
266
|
+
raise ValueError("bad_genomes_mutation_prob parameter must be float and 0-1 range")
|
221
267
|
|
222
268
|
if activation_mutate_prob is not None:
|
223
269
|
if not isinstance(activation_mutate_prob, float) or activation_mutate_prob < 0 or activation_mutate_prob > 1:
|
@@ -242,90 +288,90 @@ Example:
|
|
242
288
|
|
243
289
|
### GENOMES ARE DIVIDED INTO TWO GROUPS: GOOD GENOMES AND BAD GENOMES:
|
244
290
|
|
245
|
-
|
291
|
+
good_weights = weights[slice_center:]
|
246
292
|
bad_weights = weights[:slice_center]
|
247
|
-
best_weight =
|
293
|
+
best_weight = good_weights[-1]
|
248
294
|
|
249
|
-
|
295
|
+
good_activations = list(activation_potentiations[slice_center:])
|
250
296
|
bad_activations = list(activation_potentiations[:slice_center])
|
251
|
-
|
297
|
+
best_activations = good_activations[-1]
|
252
298
|
|
253
299
|
|
254
|
-
###
|
300
|
+
### PLANEAT IS APPLIED ACCORDING TO THE SPECIFIED POLICY, STRATEGY, AND PROBABILITY CONFIGURATION:
|
255
301
|
|
256
302
|
bar_format = loading_bars()[0]
|
257
303
|
|
258
|
-
if bar_status: progress = initialize_loading_bar(len(bad_weights), desc="GENERATION: " + str(what_gen), bar_format=bar_format, ncols=50
|
304
|
+
if bar_status: progress = initialize_loading_bar(len(bad_weights), desc="GENERATION: " + str(what_gen), bar_format=bar_format, ncols=50)
|
305
|
+
normalized_fitness = abs(normalization(fitness, dtype=dtype))
|
259
306
|
|
260
|
-
|
307
|
+
best_fitness = normalized_fitness[-1]
|
308
|
+
epsilon = np.finfo(float).eps
|
261
309
|
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
310
|
+
for i in range(len(bad_weights)):
|
311
|
+
|
312
|
+
if policy == 'aggressive':
|
313
|
+
first_parent_W = best_weight
|
314
|
+
first_parent_act = best_activations
|
266
315
|
|
316
|
+
elif policy == 'explorer':
|
317
|
+
first_parent_W = good_weights[i]
|
318
|
+
first_parent_act = good_activations[i]
|
267
319
|
|
268
|
-
|
269
|
-
bad_weights[i], bad_activations[i] = potentiate(best_weight, best_weights[i], best_activations=best_activation, good_activations=best_activations[i], dtype=dtype)
|
270
|
-
|
320
|
+
else: raise ValueError("policy parameter must be: 'aggressive' or 'explorer'")
|
271
321
|
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
322
|
+
second_parent_W, second_parent_act, s_i = second_parent_selection(good_weights, bad_weights, good_activations, bad_activations, bad_genomes_selection_prob)
|
323
|
+
|
324
|
+
bad_weights[i], bad_activations[i] = cross_over(first_parent_W,
|
325
|
+
second_parent_W,
|
326
|
+
first_parent_act,
|
327
|
+
second_parent_act,
|
328
|
+
cross_over_mode=cross_over_mode,
|
329
|
+
activation_selection_add_prob=activation_selection_add_prob,
|
330
|
+
activation_selection_change_prob=activation_selection_change_prob,
|
331
|
+
activation_selection_rate=activation_selection_rate,
|
332
|
+
bad_genomes_selection_prob=bad_genomes_selection_prob,
|
333
|
+
first_parent_fitness=best_fitness,
|
334
|
+
fitness_bias=fitness_bias,
|
335
|
+
second_parent_fitness=normalized_fitness[s_i],
|
336
|
+
epsilon=epsilon
|
337
|
+
)
|
338
|
+
|
339
|
+
|
340
|
+
if mutations is True:
|
341
|
+
mutation_prob = random.uniform(0, 1)
|
342
|
+
|
343
|
+
if mutation_prob > bad_genomes_mutation_prob:
|
344
|
+
if (save_best_genom == True and not np.array_equal(good_weights[i], best_weight)) or save_best_genom == False:
|
345
|
+
|
346
|
+
good_weights[i], good_activations[i] = mutation(good_weights[i],
|
347
|
+
good_activations[i],
|
348
|
+
activation_mutate_prob=activation_mutate_prob,
|
349
|
+
activation_add_prob=activation_mutate_add_prob,
|
350
|
+
activation_delete_prob=activation_mutate_delete_prob,
|
351
|
+
activation_change_prob=activation_mutate_change_prob,
|
352
|
+
weight_mutate_prob=weight_mutate_prob,
|
353
|
+
threshold=weight_mutate_rate,
|
354
|
+
genome_fitness=normalized_fitness[i],
|
355
|
+
epsilon=epsilon
|
356
|
+
)
|
307
357
|
|
308
|
-
|
309
|
-
|
358
|
+
elif mutation_prob < bad_genomes_mutation_prob:
|
359
|
+
bad_weights[i], bad_activations[i] = mutation(bad_weights[i],
|
360
|
+
bad_activations[i],
|
361
|
+
activation_mutate_prob=activation_mutate_prob,
|
362
|
+
activation_add_prob=activation_mutate_add_prob,
|
363
|
+
activation_delete_prob=activation_mutate_delete_prob,
|
364
|
+
activation_change_prob=activation_mutate_change_prob,
|
365
|
+
weight_mutate_prob=weight_mutate_prob,
|
366
|
+
threshold=weight_mutate_rate,
|
367
|
+
genome_fitness=normalized_fitness[i],
|
368
|
+
epsilon=epsilon
|
369
|
+
)
|
310
370
|
|
311
|
-
elif strategy == 'potentiate':
|
312
|
-
bad_weights[i], bad_activations[i] = potentiate(best_weights[random_index], best_weights[i], best_activations=best_activations[random_index], good_activations=best_activations[i])
|
313
|
-
|
314
|
-
if mutations is True:
|
315
|
-
|
316
|
-
mutation_prob = random.uniform(0, 1)
|
317
|
-
|
318
|
-
if mutation_prob > bad_genoms_mutation_prob:
|
319
|
-
if (save_best_genom == True and not np.array_equal(best_weights[i], best_weight)) or save_best_genom == False:
|
320
|
-
best_weights[i], best_activations[i] = mutation(best_weights[i], best_activations[i], activation_mutate_prob=activation_mutate_prob, activation_add_prob=activation_add_prob, activation_delete_prob=activation_delete_prob, activation_change_prob=activation_change_prob, weight_mutate_prob=weight_mutate_prob, threshold=weight_mutate_rate, dtype=dtype)
|
321
|
-
|
322
|
-
elif mutation_prob < bad_genoms_mutation_prob:
|
323
|
-
bad_weights[i], bad_activations[i] = mutation(bad_weights[i], bad_activations[i], activation_mutate_prob=activation_mutate_prob, activation_add_prob=activation_add_prob, activation_delete_prob=activation_delete_prob, activation_change_prob=activation_change_prob, weight_mutate_prob=weight_mutate_prob, threshold=weight_mutate_rate, dtype=dtype)
|
324
|
-
|
325
371
|
if bar_status: progress.update(1)
|
326
372
|
|
327
|
-
weights = np.vstack((bad_weights,
|
328
|
-
activation_potentiations = bad_activations +
|
373
|
+
weights = np.vstack((bad_weights, good_weights))
|
374
|
+
activation_potentiations = bad_activations + good_activations
|
329
375
|
|
330
376
|
### INFO PRINTING CONSOLE
|
331
377
|
|
@@ -334,22 +380,21 @@ Example:
|
|
334
380
|
print("*** Configuration Settings ***")
|
335
381
|
print(" POPULATION SIZE: ", str(len(weights)))
|
336
382
|
print(" STRATEGY: ", strategy)
|
337
|
-
|
338
|
-
if strategy == 'cross_over':
|
339
|
-
print(" CROSS OVER MODE: ", cross_over_mode)
|
340
|
-
|
383
|
+
print(" CROSS OVER MODE: ", cross_over_mode)
|
341
384
|
print(" POLICY: ", policy)
|
342
385
|
print(" MUTATIONS: ", str(mutations))
|
343
|
-
print(" BAD GENOMES MUTATION PROB: ", str(
|
344
|
-
print(" GOOD GENOMES MUTATION PROB: ", str(round(1 -
|
386
|
+
print(" BAD GENOMES MUTATION PROB: ", str(bad_genomes_mutation_prob))
|
387
|
+
print(" GOOD GENOMES MUTATION PROB: ", str(round(1 - bad_genomes_mutation_prob, 2)))
|
388
|
+
print(" BAD GENOMES SELECTION PROB: ", str(bad_genomes_selection_prob))
|
345
389
|
print(" WEIGHT MUTATE PROB: ", str(weight_mutate_prob))
|
346
390
|
print(" WEIGHT MUTATE RATE (THRESHOLD VALUE FOR SINGLE MUTATION): ", str(weight_mutate_rate))
|
347
391
|
print(" ACTIVATION MUTATE PROB: ", str(activation_mutate_prob))
|
348
|
-
print(" ACTIVATION ADD PROB: ", str(
|
349
|
-
print(" ACTIVATION DELETE PROB: ", str(
|
350
|
-
print(" ACTIVATION CHANGE PROB: ", str(
|
392
|
+
print(" ACTIVATION MUTATE ADD PROB: ", str(activation_mutate_add_prob))
|
393
|
+
print(" ACTIVATION MUTATE DELETE PROB: ", str(activation_mutate_delete_prob))
|
394
|
+
print(" ACTIVATION MUTATE CHANGE PROB: ", str(activation_mutate_change_prob))
|
351
395
|
print(" ACTIVATION SELECTION ADD PROB: ", str(activation_selection_add_prob))
|
352
396
|
print(" ACTIVATION SELECTION CHANGE PROB: ", str(activation_selection_change_prob))
|
397
|
+
print(" FITNESS BIAS: ", str(fitness_bias))
|
353
398
|
print(" ACTIVATION SELECTION RATE (THRESHOLD VALUE FOR SINGLE CROSS OVER):", str(activation_selection_rate) + '\n')
|
354
399
|
|
355
400
|
print("*** Performance ***")
|
@@ -377,7 +422,7 @@ def evaluate(x_population, weights, activation_potentiations, rl_mode=False, dty
|
|
377
422
|
activation_potentiations (list or str): A list where each entry represents an activation function
|
378
423
|
or a potentiation strategy applied to each genome. If only one
|
379
424
|
activation function is used, this can be a single string.
|
380
|
-
rl_mode (bool, optional): If True, reinforcement learning mode is activated, this accepts x_population is a single
|
425
|
+
rl_mode (bool, optional): If True, reinforcement learning mode is activated, this accepts x_population is a single genome. (Also weights and activation_potentations a single genomes part.)
|
381
426
|
Default is False.
|
382
427
|
|
383
428
|
dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
|
@@ -402,7 +447,7 @@ def evaluate(x_population, weights, activation_potentiations, rl_mode=False, dty
|
|
402
447
|
outputs = evaluate(x_population, weights, activation_potentiations, rl_mode=False)
|
403
448
|
```
|
404
449
|
|
405
|
-
- The function returns a list of outputs after processing the population, where each element corresponds to
|
450
|
+
- The function returns a list of outputs after processing the population, where each element corresponds to
|
406
451
|
the output for each genome in `x_population`.
|
407
452
|
"""
|
408
453
|
|
@@ -435,39 +480,82 @@ def evaluate(x_population, weights, activation_potentiations, rl_mode=False, dty
|
|
435
480
|
return outputs
|
436
481
|
|
437
482
|
|
438
|
-
def cross_over(
|
483
|
+
def cross_over(first_parent_W,
|
484
|
+
second_parent_W,
|
485
|
+
first_parent_act,
|
486
|
+
second_parent_act,
|
487
|
+
cross_over_mode,
|
488
|
+
activation_selection_add_prob,
|
489
|
+
activation_selection_change_prob,
|
490
|
+
activation_selection_rate,
|
491
|
+
bad_genomes_selection_prob,
|
492
|
+
first_parent_fitness,
|
493
|
+
second_parent_fitness,
|
494
|
+
fitness_bias,
|
495
|
+
epsilon):
|
439
496
|
"""
|
440
|
-
Performs a
|
497
|
+
Performs a crossover operation on two sets of weights and activation functions.
|
441
498
|
This function combines two individuals (represented by their weights and activation functions)
|
442
499
|
to create a new individual by exchanging parts of their weight matrices and activation functions.
|
443
500
|
|
444
501
|
Args:
|
445
|
-
|
446
|
-
|
447
|
-
|
448
|
-
|
502
|
+
first_parent_W (numpy.ndarray): The weight matrix of the first individual (parent).
|
503
|
+
|
504
|
+
second_parent_W (numpy.ndarray): The weight matrix of the second individual (parent).
|
505
|
+
|
506
|
+
first_parent_act (str or list): The activation function(s) of the first individual.
|
507
|
+
|
508
|
+
second_parent_act (str or list): The activation function(s) of the second individual.
|
509
|
+
|
449
510
|
cross_over_mode (str): Determines the crossover method to be used. Options:
|
450
|
-
|
451
|
-
|
452
|
-
|
453
|
-
|
511
|
+
- 'tpm': Two-Point Matrix Crossover, where sub-matrices of weights are swapped between parents.
|
512
|
+
|
513
|
+
activation_selection_add_prob (float): Probability of adding new activation functions
|
514
|
+
from the second parent to the child genome.
|
515
|
+
|
516
|
+
activation_selection_change_prob (float): Probability of replacing an activation function in the child genome
|
517
|
+
with one from the second parent.
|
518
|
+
|
519
|
+
activation_selection_rate (float): Determines how quickly activation functions are added or replaced
|
520
|
+
during the crossover process.
|
521
|
+
|
522
|
+
bad_genomes_selection_prob (float): Probability of selecting a "bad" genome for replacement with the offspring.
|
523
|
+
|
524
|
+
first_parent_fitness (float): Fitness score of the first parent.
|
525
|
+
|
526
|
+
second_parent_fitness (float): Fitness score of the second parent.
|
527
|
+
|
528
|
+
fitness_bias (float): A bias factor used to favor fitter parents during crossover operations.
|
529
|
+
|
530
|
+
epsilon (float): Small epsilon constant
|
454
531
|
|
455
532
|
Returns:
|
456
533
|
tuple: A tuple containing:
|
457
|
-
-
|
458
|
-
-
|
534
|
+
- child_W (numpy.ndarray): The weight matrix of the new individual created by crossover.
|
535
|
+
- child_act (list): The list of activation functions of the new individual created by crossover.
|
459
536
|
|
460
537
|
Notes:
|
461
538
|
- The crossover is performed based on the selected `cross_over_mode`.
|
462
|
-
|
463
|
-
|
464
|
-
- The crossover operation combines the activation functions of both parents:
|
465
|
-
- If the activation functions are passed as strings, they are converted to lists for uniform handling.
|
466
|
-
- The resulting activation functions depend on the crossover method and the parent's configuration.
|
539
|
+
- In 'tpm' mode, random sub-matrices from the parent weight matrices are swapped.
|
540
|
+
- Activation functions from both parents are combined using the probabilities and rates provided.
|
467
541
|
|
468
542
|
Example:
|
469
543
|
```python
|
470
|
-
new_weights, new_activations = cross_over(
|
544
|
+
new_weights, new_activations = cross_over(
|
545
|
+
first_parent_W=parent1_weights,
|
546
|
+
second_parent_W=parent2_weights,
|
547
|
+
first_parent_act=parent1_activations,
|
548
|
+
second_parent_act=parent2_activations,
|
549
|
+
cross_over_mode='tpm',
|
550
|
+
activation_selection_add_prob=0.8,
|
551
|
+
activation_selection_change_prob=0.5,
|
552
|
+
activation_selection_rate=0.1,
|
553
|
+
bad_genomes_selection_prob=0.7,
|
554
|
+
first_parent_fitness=0.9,
|
555
|
+
second_parent_fitness=0.85,
|
556
|
+
fitness_bias=0.6,
|
557
|
+
epsilon=np.finfo.eps
|
558
|
+
)
|
471
559
|
```
|
472
560
|
"""
|
473
561
|
|
@@ -475,8 +563,29 @@ def cross_over(best_weight, good_weight, best_activations, good_activations, cro
|
|
475
563
|
|
476
564
|
start = 0
|
477
565
|
|
478
|
-
row_end =
|
479
|
-
col_end =
|
566
|
+
row_end = first_parent_W.shape[0]
|
567
|
+
col_end = first_parent_W.shape[1]
|
568
|
+
|
569
|
+
total_gene = row_end * col_end
|
570
|
+
half_of_gene = int(total_gene / 2)
|
571
|
+
|
572
|
+
decision = dominant_parent_selection(bad_genomes_selection_prob)
|
573
|
+
|
574
|
+
if decision == 'first_parent':
|
575
|
+
dominant_parent_W = np.copy(first_parent_W)
|
576
|
+
dominant_parent_act = first_parent_act
|
577
|
+
|
578
|
+
undominant_parent_W = np.copy(second_parent_W)
|
579
|
+
undominant_parent_act = second_parent_act
|
580
|
+
succes = second_parent_fitness + epsilon
|
581
|
+
|
582
|
+
elif decision == 'second_parent':
|
583
|
+
dominant_parent_W = np.copy(second_parent_W)
|
584
|
+
dominant_parent_act = second_parent_act
|
585
|
+
|
586
|
+
undominant_parent_W = np.copy(first_parent_W)
|
587
|
+
undominant_parent_act = first_parent_act
|
588
|
+
succes = first_parent_fitness + epsilon
|
480
589
|
|
481
590
|
while True:
|
482
591
|
|
@@ -486,48 +595,46 @@ def cross_over(best_weight, good_weight, best_activations, good_activations, cro
|
|
486
595
|
row_cut_end = int(random.uniform(start, row_end))
|
487
596
|
col_cut_end = int(random.uniform(start, col_end))
|
488
597
|
|
489
|
-
if (row_cut_end > row_cut_start) and
|
598
|
+
if ((row_cut_end > row_cut_start) and
|
599
|
+
(col_cut_end > col_cut_start) and
|
600
|
+
(((row_cut_end + 1) - (row_cut_start + 1) * 2) + ((col_cut_end + 1) - (col_cut_start + 1) * 2) <= half_of_gene)):
|
490
601
|
break
|
602
|
+
|
603
|
+
selection_bias = random.uniform(0, 1)
|
491
604
|
|
492
|
-
|
493
|
-
|
494
|
-
|
495
|
-
if cross_over_mode == 'tpm':
|
496
|
-
new_weight[row_cut_start:row_cut_end, col_cut_start:col_cut_end] = best_w2[row_cut_start:row_cut_end, col_cut_start:col_cut_end]
|
497
|
-
|
498
|
-
elif cross_over_mode == 'plantic':
|
499
|
-
new_weight[row_cut_start:row_cut_end,:] = best_w2[row_cut_start:row_cut_end,:]
|
500
|
-
|
605
|
+
if fitness_bias > selection_bias:
|
606
|
+
row_cut_start = math.floor(row_cut_start * (succes + epsilon))
|
607
|
+
row_cut_end = math.ceil(row_cut_end * (succes + epsilon))
|
501
608
|
|
502
|
-
|
503
|
-
|
609
|
+
col_cut_start = math.floor(col_cut_start * (succes + epsilon))
|
610
|
+
col_cut_end = math.ceil(col_cut_end * (succes + epsilon))
|
504
611
|
|
505
|
-
|
506
|
-
good = [good_activations]
|
612
|
+
child_W = dominant_parent_W
|
507
613
|
|
508
|
-
if
|
509
|
-
|
614
|
+
if cross_over_mode == 'tpm':
|
615
|
+
child_W[row_cut_start:row_cut_end, col_cut_start:col_cut_end] = undominant_parent_W[row_cut_start:row_cut_end, col_cut_start:col_cut_end]
|
510
616
|
|
511
|
-
if isinstance(
|
512
|
-
|
617
|
+
if isinstance(dominant_parent_act, str): dominant_parent_act = [dominant_parent_act]
|
618
|
+
if isinstance(undominant_parent_act, str): undominant_parent_act = [undominant_parent_act]
|
513
619
|
|
514
|
-
|
620
|
+
child_act = list(np.copy(dominant_parent_act))
|
515
621
|
|
516
622
|
activation_selection_add_prob = 1 - activation_selection_add_prob # if prob 0.8 (%80) then 1 - 0.8. Because 0-1 random number probably greater than 0.2
|
517
623
|
potential_activation_selection_add = random.uniform(0, 1)
|
518
624
|
|
519
625
|
if potential_activation_selection_add > activation_selection_add_prob:
|
520
626
|
|
627
|
+
activation_selection_rate = activation_selection_rate / succes
|
521
628
|
new_threshold = activation_selection_rate
|
522
629
|
|
523
630
|
while True:
|
524
631
|
|
525
|
-
|
526
|
-
|
632
|
+
random_index = int(random.uniform(0, len(undominant_parent_act)-1))
|
633
|
+
random_undominant_activation = undominant_parent_act[random_index]
|
527
634
|
|
528
|
-
|
635
|
+
child_act.append(random_undominant_activation)
|
529
636
|
|
530
|
-
if len(
|
637
|
+
if len(dominant_parent_act) > new_threshold:
|
531
638
|
new_threshold += activation_selection_rate
|
532
639
|
pass
|
533
640
|
|
@@ -538,69 +645,37 @@ def cross_over(best_weight, good_weight, best_activations, good_activations, cro
|
|
538
645
|
potential_activation_selection_change_prob = random.uniform(0, 1)
|
539
646
|
|
540
647
|
if potential_activation_selection_change_prob > activation_selection_change_prob:
|
541
|
-
|
648
|
+
|
649
|
+
activation_selection_rate = activation_selection_rate / succes
|
542
650
|
new_threshold = activation_selection_rate
|
543
651
|
|
544
652
|
while True:
|
545
653
|
|
546
|
-
|
547
|
-
|
548
|
-
|
654
|
+
random_index_undominant = int(random.uniform(0, len(undominant_parent_act)-1))
|
655
|
+
random_index_dominant = int(random.uniform(0, len(dominant_parent_act)-1))
|
656
|
+
random_undominant_activation = undominant_parent_act[random_index_undominant]
|
549
657
|
|
550
|
-
|
658
|
+
child_act[random_index_dominant] = random_undominant_activation
|
551
659
|
|
552
|
-
if len(
|
660
|
+
if len(dominant_parent_act) > new_threshold:
|
553
661
|
new_threshold += activation_selection_rate
|
554
662
|
pass
|
555
663
|
|
556
664
|
else:
|
557
665
|
break
|
558
666
|
|
559
|
-
return
|
560
|
-
|
561
|
-
def
|
562
|
-
|
563
|
-
|
564
|
-
|
565
|
-
|
566
|
-
|
567
|
-
|
568
|
-
|
569
|
-
|
570
|
-
|
571
|
-
dtype (numpy.dtype): Data type for the arrays. np.float32 by default. Example: np.float64 or np.float16. [fp32 for balanced devices, fp64 for strong devices, fp16 for weak devices: not reccomended!] (optional)
|
572
|
-
|
573
|
-
Returns:
|
574
|
-
tuple: A tuple containing:
|
575
|
-
- new_weight (numpy.ndarray): The new weight matrix after potentiation and normalization. (Max abs normalization.)
|
576
|
-
- new_activations (list): The new activation functions after concatenation.
|
577
|
-
|
578
|
-
Notes:
|
579
|
-
- The weight matrices are element-wise added and then normalized using the `normalization` function. (Max abs normalization.)
|
580
|
-
- The activation functions from both parents are concatenated to form the new activation functions list.
|
581
|
-
- If the activation functions are passed as strings, they are converted to lists for uniform handling.
|
582
|
-
"""
|
583
|
-
|
584
|
-
new_weight = best_weight + good_weight
|
585
|
-
new_weight = normalization(new_weight, dtype=dtype)
|
586
|
-
|
587
|
-
if isinstance(best_activations, str):
|
588
|
-
best = [best_activations]
|
589
|
-
|
590
|
-
if isinstance(good_activations, str):
|
591
|
-
good = [good_activations]
|
592
|
-
|
593
|
-
if isinstance(best_activations, list):
|
594
|
-
best = best_activations
|
595
|
-
|
596
|
-
if isinstance(good_activations, list):
|
597
|
-
good = good_activations
|
598
|
-
|
599
|
-
new_activations = best + good
|
600
|
-
|
601
|
-
return new_weight, new_activations
|
602
|
-
|
603
|
-
def mutation(weight, activations, activation_mutate_prob, activation_add_prob, activation_delete_prob, activation_change_prob, weight_mutate_prob, threshold, dtype=np.float32):
|
667
|
+
return child_W, child_act
|
668
|
+
|
669
|
+
def mutation(weight,
|
670
|
+
activations,
|
671
|
+
activation_mutate_prob,
|
672
|
+
activation_add_prob,
|
673
|
+
activation_delete_prob,
|
674
|
+
activation_change_prob,
|
675
|
+
weight_mutate_prob,
|
676
|
+
threshold,
|
677
|
+
genome_fitness,
|
678
|
+
epsilon):
|
604
679
|
"""
|
605
680
|
Performs mutation on the given weight matrix and activation functions.
|
606
681
|
- The weight matrix is mutated by randomly changing its values based on the mutation probability.
|
@@ -608,14 +683,24 @@ def mutation(weight, activations, activation_mutate_prob, activation_add_prob, a
|
|
608
683
|
|
609
684
|
Args:
|
610
685
|
weight (numpy.ndarray): The weight matrix to mutate.
|
686
|
+
|
611
687
|
activations (list): The list of activation functions to mutate.
|
688
|
+
|
612
689
|
activation_mutate_prob (float): The overall probability of mutating activation functions.
|
690
|
+
|
613
691
|
activation_add_prob (float): Probability of adding a new activation function.
|
692
|
+
|
614
693
|
activation_delete_prob (float): Probability of removing an existing activation function.
|
694
|
+
|
615
695
|
activation_change_prob (float): Probability of replacing an existing activation function with a new one.
|
696
|
+
|
616
697
|
weight_mutate_prob (float): The probability of mutating weight matrix.
|
698
|
+
|
617
699
|
threshold (float): If the value you enter here is equal to the result of input layer * output layer, only a single weight will be mutated during each mutation process. If the value you enter here is half of the result of input layer * output layer, two weights in the weight matrix will be mutated.
|
618
|
-
|
700
|
+
|
701
|
+
genome_fitness (float): Fitness value of genome
|
702
|
+
|
703
|
+
epsilon (float): Small epsilon constant
|
619
704
|
|
620
705
|
Returns:
|
621
706
|
tuple: A tuple containing:
|
@@ -634,8 +719,7 @@ def mutation(weight, activations, activation_mutate_prob, activation_add_prob, a
|
|
634
719
|
the optimization process.
|
635
720
|
"""
|
636
721
|
|
637
|
-
if isinstance(activations, str):
|
638
|
-
activations = [activations]
|
722
|
+
if isinstance(activations, str): activations = [activations]
|
639
723
|
|
640
724
|
weight_mutate_prob = 1 - weight_mutate_prob # if prob 0.8 (%80) then 1 - 0.8. Because 0-1 random number probably greater than 0.2
|
641
725
|
potential_weight_mutation = random.uniform(0, 1)
|
@@ -645,6 +729,8 @@ def mutation(weight, activations, activation_mutate_prob, activation_add_prob, a
|
|
645
729
|
start = 0
|
646
730
|
row_end = weight.shape[0]
|
647
731
|
col_end = weight.shape[1]
|
732
|
+
|
733
|
+
threshold = threshold * (genome_fitness + epsilon)
|
648
734
|
new_threshold = threshold
|
649
735
|
|
650
736
|
while True:
|
@@ -659,8 +745,7 @@ def mutation(weight, activations, activation_mutate_prob, activation_add_prob, a
|
|
659
745
|
pass
|
660
746
|
|
661
747
|
else:
|
662
|
-
break
|
663
|
-
|
748
|
+
break
|
664
749
|
|
665
750
|
activation_mutate_prob = 1 - activation_mutate_prob
|
666
751
|
potential_activation_mutation = random.uniform(0, 1)
|
@@ -684,13 +769,7 @@ def mutation(weight, activations, activation_mutate_prob, activation_add_prob, a
|
|
684
769
|
|
685
770
|
random_index_all_act = int(random.uniform(0, len(all_acts)-1))
|
686
771
|
activations.append(all_acts[random_index_all_act])
|
687
|
-
|
688
|
-
for i in range(weight.shape[0]):
|
689
|
-
|
690
|
-
weight[i,:] = apply_activation(weight[i,:], activations[-1])
|
691
772
|
|
692
|
-
weight = normalization(weight, dtype=dtype)
|
693
|
-
|
694
773
|
except:
|
695
774
|
|
696
775
|
activation = activations
|
@@ -699,26 +778,12 @@ def mutation(weight, activations, activation_mutate_prob, activation_add_prob, a
|
|
699
778
|
activations.append(activation)
|
700
779
|
activations.append(all_acts[int(random.uniform(0, len(all_acts)-1))])
|
701
780
|
|
702
|
-
for i in range(weight.shape[0]):
|
703
|
-
|
704
|
-
weight[i,:] = apply_activation(weight[i,:], activations[-1])
|
705
|
-
|
706
|
-
weight = normalization(weight, dtype=dtype)
|
707
|
-
|
708
781
|
if potential_activation_delete_prob > activation_delete_prob and len(activations) > 1:
|
709
782
|
|
710
783
|
random_index = random.randint(0, len(activations) - 1)
|
711
|
-
|
712
|
-
wc = np.copy(weight)
|
713
|
-
for i in range(weight.shape[0]):
|
714
|
-
|
715
|
-
wc[i,:] = apply_activation(wc[i,:], activations[random_index])
|
716
|
-
weight[i,:] -= wc[i,:]
|
717
|
-
|
718
784
|
activations.pop(random_index)
|
719
|
-
weight = normalization(weight, dtype=dtype)
|
720
785
|
|
721
|
-
|
786
|
+
|
722
787
|
if potential_activation_change_prob > activation_change_prob:
|
723
788
|
|
724
789
|
random_index_all_act = int(random.uniform(0, len(all_acts)-1))
|
@@ -726,18 +791,28 @@ def mutation(weight, activations, activation_mutate_prob, activation_add_prob, a
|
|
726
791
|
|
727
792
|
activations[random_index_genom_act] = all_acts[random_index_all_act]
|
728
793
|
|
729
|
-
|
730
|
-
for i in range(weight.shape[0]):
|
794
|
+
return weight, activations
|
731
795
|
|
732
|
-
|
733
|
-
|
796
|
+
def second_parent_selection(good_weights, bad_weights, good_activations, bad_activations, bad_genomes_selection_prob):
|
797
|
+
|
798
|
+
selection_prob = random.uniform(0, 1)
|
799
|
+
random_index = int(random.uniform(0, len(good_weights) - 1))
|
734
800
|
|
735
|
-
|
801
|
+
if selection_prob > bad_genomes_selection_prob:
|
802
|
+
second_selected_W = good_weights[random_index]
|
803
|
+
second_selected_act = good_activations[random_index]
|
736
804
|
|
737
|
-
|
805
|
+
else:
|
806
|
+
second_selected_W = bad_weights[random_index]
|
807
|
+
second_selected_act = bad_activations[random_index]
|
808
|
+
|
809
|
+
return second_selected_W, second_selected_act, random_index
|
810
|
+
|
811
|
+
def dominant_parent_selection(bad_genomes_selection_prob):
|
738
812
|
|
739
|
-
|
813
|
+
selection_prob = random.uniform(0, 1)
|
740
814
|
|
741
|
-
|
815
|
+
if selection_prob > bad_genomes_selection_prob: decision = 'first_parent'
|
816
|
+
else: decision = 'second_parent'
|
742
817
|
|
743
|
-
return
|
818
|
+
return decision
|