pyerualjetwork 4.1.9__py3-none-any.whl → 4.1.9b0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/data_operations.py +1 -1
- pyerualjetwork/plan.py +8 -1
- pyerualjetwork/planeat.py +1 -1
- pyerualjetwork/planeat_cuda.py +1 -1
- {pyerualjetwork-4.1.9.dist-info → pyerualjetwork-4.1.9b0.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.1.9.dist-info → pyerualjetwork-4.1.9b0.dist-info}/RECORD +9 -9
- {pyerualjetwork-4.1.9.dist-info → pyerualjetwork-4.1.9b0.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.1.9.dist-info → pyerualjetwork-4.1.9b0.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -48,7 +48,7 @@ for package_name in package_names:
|
|
48
48
|
|
49
49
|
print(f"PyerualJetwork is ready to use with {err} errors")
|
50
50
|
|
51
|
-
__version__ = "4.1.
|
51
|
+
__version__ = "4.1.9b"
|
52
52
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
53
53
|
|
54
54
|
def print_version(__version__):
|
@@ -11,7 +11,7 @@ def encode_one_hot(y_train, y_test=None, summary=False):
|
|
11
11
|
Args:
|
12
12
|
y_train (numpy.ndarray): Train label data.
|
13
13
|
y_test (numpy.ndarray): Test label data one-hot encoded. (optional).
|
14
|
-
summary (bool
|
14
|
+
summary (bool): If True, prints the class-to-index mapping. Default: False
|
15
15
|
|
16
16
|
Returns:
|
17
17
|
tuple: One-hot encoded y_train and (if given) y_test.
|
pyerualjetwork/plan.py
CHANGED
@@ -177,7 +177,7 @@ def learner(x_train, y_train, optimizer, x_test=None, y_test=None, strategy='acc
|
|
177
177
|
neural_web_history=False, show_current_activations=False, auto_normalization=True,
|
178
178
|
neurons_history=False, early_stop=False, loss='categorical_crossentropy', show_history=False,
|
179
179
|
interval=33.33, target_acc=None, target_loss=None, except_this=None,
|
180
|
-
only_this=None, start_this_act=None, start_this_W=None, target_fitness='max', dtype=np.float32):
|
180
|
+
only_this=None, start_this_act=None, start_this_W=None, target_fitness='max', pop_size=None, dtype=np.float32):
|
181
181
|
"""
|
182
182
|
Optimizes the activation functions for a neural network by leveraging train data to find
|
183
183
|
the most accurate combination of activation potentiation for the given dataset using genetic algorithm NEAT (Neuroevolution of Augmenting Topologies). But modifided for PLAN version. Created by me: PLANEAT.
|
@@ -282,6 +282,13 @@ def learner(x_train, y_train, optimizer, x_test=None, y_test=None, strategy='acc
|
|
282
282
|
if gen is None:
|
283
283
|
gen = len(activation_potentiation)
|
284
284
|
|
285
|
+
if pop_size is not None and pop_size > len(activation_potentiation):
|
286
|
+
for i in range(pop_size - len(activation_potentiation)):
|
287
|
+
rand_index = random.randint(0, len(activation_potentiation)-1)
|
288
|
+
activation_potentiation.append(all_activations()[rand_index])
|
289
|
+
|
290
|
+
elif pop_size is not None and pop_size < len(activation_potentiation): raise ValueError(f"'pop_size' must be greater then activation_potentiation list length. But your act pot list length: {len(activation_potentiation)}")
|
291
|
+
|
285
292
|
if strategy != 'accuracy' and strategy != 'f1' and strategy != 'recall' and strategy != 'precision': raise ValueError("Strategy parameter only be 'accuracy' or 'f1' or 'recall' or 'precision'.")
|
286
293
|
|
287
294
|
if start_this_act is None and len(activation_potentiation) % 2 != 0: raise ValueError("Activation length must be even number. Please use 'except_this' parameter and except some activation. For example: except_this=['linear']")
|
pyerualjetwork/planeat.py
CHANGED
@@ -255,7 +255,7 @@ Example:
|
|
255
255
|
|
256
256
|
bar_format = loading_bars()[0]
|
257
257
|
|
258
|
-
if bar_status: progress = initialize_loading_bar(len(bad_weights), desc="GENERATION: " + str(what_gen), bar_format=bar_format, ncols=50)
|
258
|
+
if bar_status: progress = initialize_loading_bar(len(bad_weights), desc="GENERATION: " + str(what_gen), bar_format=bar_format, ncols=50, ascii="▱▰")
|
259
259
|
|
260
260
|
for i in range(len(bad_weights)):
|
261
261
|
|
pyerualjetwork/planeat_cuda.py
CHANGED
@@ -255,7 +255,7 @@ Example:
|
|
255
255
|
|
256
256
|
bar_format = loading_bars()[0]
|
257
257
|
|
258
|
-
if bar_status: progress = initialize_loading_bar(len(bad_weights), desc="GENERATION: " + str(what_gen), bar_format=bar_format, ncols=50)
|
258
|
+
if bar_status: progress = initialize_loading_bar(len(bad_weights), desc="GENERATION: " + str(what_gen), bar_format=bar_format, ncols=50, ascii="▱▰")
|
259
259
|
|
260
260
|
for i in range(len(bad_weights)):
|
261
261
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.1.
|
3
|
+
Version: 4.1.9b0
|
4
4
|
Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,7 +1,7 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=EtPPgs8XzwZUjvP5QH-GZ6s-QvjoKmYTTQ923URcGgk,2176
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
|
4
|
-
pyerualjetwork/data_operations.py,sha256=
|
4
|
+
pyerualjetwork/data_operations.py,sha256=ZM24BuPsIAtI0a_Exr4HgCjmlb285wEeO8juFY9sJr0,14680
|
5
5
|
pyerualjetwork/data_operations_cuda.py,sha256=UpoJoFhIwTU4xg9dVuLAxLAT4CkRaGsxvtJG9j1xrNo,17629
|
6
6
|
pyerualjetwork/help.py,sha256=OZghUy7GZTgEX_i3NYtgcpzUgCDOi6r2vVUF1ROkFiI,774
|
7
7
|
pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
|
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
|
|
11
11
|
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
12
12
|
pyerualjetwork/model_operations.py,sha256=hnhR8dtoICNJWIwGgJ65-LN3GYN_DYH4LMe6YpZVbnI,12967
|
13
13
|
pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
|
14
|
-
pyerualjetwork/plan.py,sha256=
|
14
|
+
pyerualjetwork/plan.py,sha256=1omZw3azcn4MM7SFgpnvow4oOBp3l1skc49eJoUK1pY,34872
|
15
15
|
pyerualjetwork/plan_cuda.py,sha256=KoKjsoWTLM-q07G1Gy0-LYXGlp15Fno6JqHz-Jzi_yE,35983
|
16
|
-
pyerualjetwork/planeat.py,sha256=
|
17
|
-
pyerualjetwork/planeat_cuda.py,sha256=
|
16
|
+
pyerualjetwork/planeat.py,sha256=VtWtWndbKoFNYTWd1EsyKBV4Vp5U6cc7uWDgQ4WjHqo,40248
|
17
|
+
pyerualjetwork/planeat_cuda.py,sha256=fSn28ZbxctPvBjpKgtv_uGwwUdTEXkBizy76mMlZYJ0,40237
|
18
18
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
19
|
pyerualjetwork/visualizations.py,sha256=QaYSIyVkJZ8NqpBKArQKkI1y37nCQo_KIM98IMssnRc,28766
|
20
20
|
pyerualjetwork/visualizations_cuda.py,sha256=F60vQ92AXlMgBka3InXnOtGoM25vQJAlBIU2AlYTwks,29200
|
21
|
-
pyerualjetwork-4.1.
|
22
|
-
pyerualjetwork-4.1.
|
23
|
-
pyerualjetwork-4.1.
|
24
|
-
pyerualjetwork-4.1.
|
21
|
+
pyerualjetwork-4.1.9b0.dist-info/METADATA,sha256=OgdChVct5X3byFsrA1wWOp_hn3EFL4GiQW23MEGlLXQ,7795
|
22
|
+
pyerualjetwork-4.1.9b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
23
|
+
pyerualjetwork-4.1.9b0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
24
|
+
pyerualjetwork-4.1.9b0.dist-info/RECORD,,
|
File without changes
|
File without changes
|