pyerualjetwork 4.1.9__py3-none-any.whl → 4.1.9b0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -48,7 +48,7 @@ for package_name in package_names:
48
48
 
49
49
  print(f"PyerualJetwork is ready to use with {err} errors")
50
50
 
51
- __version__ = "4.1.9"
51
+ __version__ = "4.1.9b"
52
52
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
53
53
 
54
54
  def print_version(__version__):
@@ -11,7 +11,7 @@ def encode_one_hot(y_train, y_test=None, summary=False):
11
11
  Args:
12
12
  y_train (numpy.ndarray): Train label data.
13
13
  y_test (numpy.ndarray): Test label data one-hot encoded. (optional).
14
- summary (bool, optional): If True, prints the class-to-index mapping. Default: False
14
+ summary (bool): If True, prints the class-to-index mapping. Default: False
15
15
 
16
16
  Returns:
17
17
  tuple: One-hot encoded y_train and (if given) y_test.
pyerualjetwork/plan.py CHANGED
@@ -177,7 +177,7 @@ def learner(x_train, y_train, optimizer, x_test=None, y_test=None, strategy='acc
177
177
  neural_web_history=False, show_current_activations=False, auto_normalization=True,
178
178
  neurons_history=False, early_stop=False, loss='categorical_crossentropy', show_history=False,
179
179
  interval=33.33, target_acc=None, target_loss=None, except_this=None,
180
- only_this=None, start_this_act=None, start_this_W=None, target_fitness='max', dtype=np.float32):
180
+ only_this=None, start_this_act=None, start_this_W=None, target_fitness='max', pop_size=None, dtype=np.float32):
181
181
  """
182
182
  Optimizes the activation functions for a neural network by leveraging train data to find
183
183
  the most accurate combination of activation potentiation for the given dataset using genetic algorithm NEAT (Neuroevolution of Augmenting Topologies). But modifided for PLAN version. Created by me: PLANEAT.
@@ -282,6 +282,13 @@ def learner(x_train, y_train, optimizer, x_test=None, y_test=None, strategy='acc
282
282
  if gen is None:
283
283
  gen = len(activation_potentiation)
284
284
 
285
+ if pop_size is not None and pop_size > len(activation_potentiation):
286
+ for i in range(pop_size - len(activation_potentiation)):
287
+ rand_index = random.randint(0, len(activation_potentiation)-1)
288
+ activation_potentiation.append(all_activations()[rand_index])
289
+
290
+ elif pop_size is not None and pop_size < len(activation_potentiation): raise ValueError(f"'pop_size' must be greater then activation_potentiation list length. But your act pot list length: {len(activation_potentiation)}")
291
+
285
292
  if strategy != 'accuracy' and strategy != 'f1' and strategy != 'recall' and strategy != 'precision': raise ValueError("Strategy parameter only be 'accuracy' or 'f1' or 'recall' or 'precision'.")
286
293
 
287
294
  if start_this_act is None and len(activation_potentiation) % 2 != 0: raise ValueError("Activation length must be even number. Please use 'except_this' parameter and except some activation. For example: except_this=['linear']")
pyerualjetwork/planeat.py CHANGED
@@ -255,7 +255,7 @@ Example:
255
255
 
256
256
  bar_format = loading_bars()[0]
257
257
 
258
- if bar_status: progress = initialize_loading_bar(len(bad_weights), desc="GENERATION: " + str(what_gen), bar_format=bar_format, ncols=50)
258
+ if bar_status: progress = initialize_loading_bar(len(bad_weights), desc="GENERATION: " + str(what_gen), bar_format=bar_format, ncols=50, ascii="▱▰")
259
259
 
260
260
  for i in range(len(bad_weights)):
261
261
 
@@ -255,7 +255,7 @@ Example:
255
255
 
256
256
  bar_format = loading_bars()[0]
257
257
 
258
- if bar_status: progress = initialize_loading_bar(len(bad_weights), desc="GENERATION: " + str(what_gen), bar_format=bar_format, ncols=50)
258
+ if bar_status: progress = initialize_loading_bar(len(bad_weights), desc="GENERATION: " + str(what_gen), bar_format=bar_format, ncols=50, ascii="▱▰")
259
259
 
260
260
  for i in range(len(bad_weights)):
261
261
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.1.9
3
+ Version: 4.1.9b0
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,7 +1,7 @@
1
- pyerualjetwork/__init__.py,sha256=h1cmeJv4HBNKFFZhCMMsdIxaEMYqdzTuuf8QYdLjyIA,2175
1
+ pyerualjetwork/__init__.py,sha256=EtPPgs8XzwZUjvP5QH-GZ6s-QvjoKmYTTQ923URcGgk,2176
2
2
  pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
4
- pyerualjetwork/data_operations.py,sha256=HjyW2QE18age6J8iG0jpbwqGOylL_nM-vE2CLbP9Wes,14690
4
+ pyerualjetwork/data_operations.py,sha256=ZM24BuPsIAtI0a_Exr4HgCjmlb285wEeO8juFY9sJr0,14680
5
5
  pyerualjetwork/data_operations_cuda.py,sha256=UpoJoFhIwTU4xg9dVuLAxLAT4CkRaGsxvtJG9j1xrNo,17629
6
6
  pyerualjetwork/help.py,sha256=OZghUy7GZTgEX_i3NYtgcpzUgCDOi6r2vVUF1ROkFiI,774
7
7
  pyerualjetwork/loss_functions.py,sha256=6PyBI232SQRGuFnG3LDGvnv_PUdWzT2_2mUODJiejGI,618
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
11
11
  pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
12
12
  pyerualjetwork/model_operations.py,sha256=hnhR8dtoICNJWIwGgJ65-LN3GYN_DYH4LMe6YpZVbnI,12967
13
13
  pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
14
- pyerualjetwork/plan.py,sha256=QwF7kAzEGSTbYaBHHjaPcqYsMfb2I9FGDykSouBhxmk,34335
14
+ pyerualjetwork/plan.py,sha256=1omZw3azcn4MM7SFgpnvow4oOBp3l1skc49eJoUK1pY,34872
15
15
  pyerualjetwork/plan_cuda.py,sha256=KoKjsoWTLM-q07G1Gy0-LYXGlp15Fno6JqHz-Jzi_yE,35983
16
- pyerualjetwork/planeat.py,sha256=0kkjziTY_BDEr7SOJjHIHxu_kikOmP-yfVOgwEjXppg,40232
17
- pyerualjetwork/planeat_cuda.py,sha256=mxh5DzJvSwNJ_nc4b_SNMDDIoyBistjK5IjjpOJR3hM,40221
16
+ pyerualjetwork/planeat.py,sha256=VtWtWndbKoFNYTWd1EsyKBV4Vp5U6cc7uWDgQ4WjHqo,40248
17
+ pyerualjetwork/planeat_cuda.py,sha256=fSn28ZbxctPvBjpKgtv_uGwwUdTEXkBizy76mMlZYJ0,40237
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=QaYSIyVkJZ8NqpBKArQKkI1y37nCQo_KIM98IMssnRc,28766
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=F60vQ92AXlMgBka3InXnOtGoM25vQJAlBIU2AlYTwks,29200
21
- pyerualjetwork-4.1.9.dist-info/METADATA,sha256=-K3bK3dDAFM4QR-yU7u4qRgDTvLi_G6ftaZQWhikpUA,7793
22
- pyerualjetwork-4.1.9.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
- pyerualjetwork-4.1.9.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
- pyerualjetwork-4.1.9.dist-info/RECORD,,
21
+ pyerualjetwork-4.1.9b0.dist-info/METADATA,sha256=OgdChVct5X3byFsrA1wWOp_hn3EFL4GiQW23MEGlLXQ,7795
22
+ pyerualjetwork-4.1.9b0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
+ pyerualjetwork-4.1.9b0.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
+ pyerualjetwork-4.1.9b0.dist-info/RECORD,,