pyerualjetwork 4.1.8b2__py3-none-any.whl → 4.1.8b4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -48,7 +48,7 @@ for package_name in package_names:
48
48
 
49
49
  print(f"PyerualJetwork is ready to use with {err} errors")
50
50
 
51
- __version__ = "4.1.8b2"
51
+ __version__ = "4.1.8b4"
52
52
  __update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
53
53
 
54
54
  def print_version(__version__):
pyerualjetwork/plan.py CHANGED
@@ -102,8 +102,6 @@ def fit(
102
102
  Returns:
103
103
  numpyarray([num]): (Weight matrix).
104
104
  """
105
-
106
- from model_operations import get_acc
107
105
 
108
106
  # Pre-checks
109
107
 
@@ -340,18 +338,23 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
340
338
 
341
339
  for i in range(len(activation_potentiation)):
342
340
  print(f"\rPre-Run {i}/{len(activation_potentiation)}",end='')
343
-
341
+
344
342
  if i == 0 and start_this_act is not None:
345
343
  act_pop[0] = activation_potentiation[i]
346
- weight_pop[0] = W
344
+
347
345
  else:
348
346
  act_pop.append(activation_potentiation[i])
349
- weight_pop.append(W)
350
-
347
+
351
348
  x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
352
349
  W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
353
350
  model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype)
354
351
 
352
+ if i == 0 and start_this_W is not None:
353
+ weight_pop[0] = W
354
+
355
+ else:
356
+ weight_pop.append(W)
357
+
355
358
  if strategy == 'accuracy': target_pop.append(model[get_acc()])
356
359
  elif strategy == 'f1' or strategy == 'precision' or strategy == 'recall':
357
360
  precision_score, recall_score, f1_score = metrics(y_test_batch, model[get_preds()])
@@ -405,7 +408,7 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
405
408
 
406
409
  if ((strategy == 'accuracy' and acc >= best_acc) or
407
410
  (strategy == 'f1' and f1_score >= best_f1) or
408
- (strategy == 'precision' and precision_score >= best_precision) or
411
+ (strategy == 'precision' and precision_score >= best_precision) or
409
412
  (strategy == 'recall' and recall_score >= best_recall)):
410
413
 
411
414
  best_acc = acc
@@ -107,8 +107,6 @@ def fit(
107
107
  numpyarray([num]): (Weight matrix).
108
108
  """
109
109
  # Pre-checks
110
-
111
- from memory_operations import transfer_to_gpu, transfer_to_cpu
112
110
 
113
111
  if train_bar and val:
114
112
  train_progress = initialize_loading_bar(total=len(x_train), ncols=71, desc='Fitting', bar_format=bar_format_normal)
@@ -352,18 +350,23 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
352
350
 
353
351
  for i in range(len(activation_potentiation)):
354
352
  print(f"\rPre-Run {i}/{len(activation_potentiation)}",end='')
355
-
353
+
356
354
  if i == 0 and start_this_act is not None:
357
355
  act_pop[0] = activation_potentiation[i]
358
- weight_pop[0] = W
356
+
359
357
  else:
360
358
  act_pop.append(activation_potentiation[i])
361
- weight_pop.append(W)
362
359
 
363
360
  x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
364
361
  W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype, memory=memory)
365
362
  model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype, memory=memory)
366
363
 
364
+ if i == 0 and start_this_W is not None:
365
+ weight_pop[0] = W
366
+
367
+ else:
368
+ weight_pop.append(W)
369
+
367
370
  if strategy == 'accuracy': target_pop.append(model[get_acc()])
368
371
  elif strategy == 'f1' or strategy == 'precision' or strategy == 'recall':
369
372
  precision_score, recall_score, f1_score = metrics(y_test_batch, model[get_preds()])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pyerualjetwork
3
- Version: 4.1.8b2
3
+ Version: 4.1.8b4
4
4
  Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
5
5
  Author: Hasan Can Beydili
6
6
  Author-email: tchasancan@gmail.com
@@ -1,4 +1,4 @@
1
- pyerualjetwork/__init__.py,sha256=5LHOaZ_gSRHUz3KzOdmNMu5tIEODmkWB3NC9ZUstWpQ,2177
1
+ pyerualjetwork/__init__.py,sha256=AHVG4kPWjJA2BALyEH8I33-IaATEcD1MXZuc9K_ZPIQ,2177
2
2
  pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
3
3
  pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
4
4
  pyerualjetwork/data_operations.py,sha256=ZM24BuPsIAtI0a_Exr4HgCjmlb285wEeO8juFY9sJr0,14680
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
11
11
  pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
12
12
  pyerualjetwork/model_operations.py,sha256=hnhR8dtoICNJWIwGgJ65-LN3GYN_DYH4LMe6YpZVbnI,12967
13
13
  pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
14
- pyerualjetwork/plan.py,sha256=SiW7DUZ0G1GDUIWeBmhCnRvoyufsLEMd1zw5rDcTAO4,35408
15
- pyerualjetwork/plan_cuda.py,sha256=LVeceJLNSMyTSZ-HPJuuWvVK0ymscQXsPlXtE8P4DBM,36045
14
+ pyerualjetwork/plan.py,sha256=-VwMyzxU6myxJlioCCq9kjP6kFSiEq7hCS-4F4uvsdY,35409
15
+ pyerualjetwork/plan_cuda.py,sha256=flOyaXeOUi0dMKn_kmTN2fvQYPqeehQxT-_PpwwBV6M,36037
16
16
  pyerualjetwork/planeat.py,sha256=pVp8ndi5E_muwOTFmlcav70-5LLV5A2yA0_SgURvT08,40236
17
17
  pyerualjetwork/planeat_cuda.py,sha256=3Vt5_zHUK4Jt_vW6LugQOy3to8gzQfT0_poPxeJTy68,40253
18
18
  pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
19
19
  pyerualjetwork/visualizations.py,sha256=QaYSIyVkJZ8NqpBKArQKkI1y37nCQo_KIM98IMssnRc,28766
20
20
  pyerualjetwork/visualizations_cuda.py,sha256=9qw46Y4bo67l0nVVF1FSNS8ksyzbIAJdaPDFOhN5J8Y,29188
21
- pyerualjetwork-4.1.8b2.dist-info/METADATA,sha256=NJztKo54YCnwEheTj0TX9rCDJAWfDGk66qds30ZNcSE,7795
22
- pyerualjetwork-4.1.8b2.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
- pyerualjetwork-4.1.8b2.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
- pyerualjetwork-4.1.8b2.dist-info/RECORD,,
21
+ pyerualjetwork-4.1.8b4.dist-info/METADATA,sha256=ssSDHmcH9nN7POx5EfZh1n0CkYreyK8myuDtXT3kUrQ,7795
22
+ pyerualjetwork-4.1.8b4.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
23
+ pyerualjetwork-4.1.8b4.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
24
+ pyerualjetwork-4.1.8b4.dist-info/RECORD,,