pyerualjetwork 4.1.8b2__py3-none-any.whl → 4.1.8b4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyerualjetwork/__init__.py +1 -1
- pyerualjetwork/plan.py +10 -7
- pyerualjetwork/plan_cuda.py +8 -5
- {pyerualjetwork-4.1.8b2.dist-info → pyerualjetwork-4.1.8b4.dist-info}/METADATA +1 -1
- {pyerualjetwork-4.1.8b2.dist-info → pyerualjetwork-4.1.8b4.dist-info}/RECORD +7 -7
- {pyerualjetwork-4.1.8b2.dist-info → pyerualjetwork-4.1.8b4.dist-info}/WHEEL +0 -0
- {pyerualjetwork-4.1.8b2.dist-info → pyerualjetwork-4.1.8b4.dist-info}/top_level.txt +0 -0
pyerualjetwork/__init__.py
CHANGED
@@ -48,7 +48,7 @@ for package_name in package_names:
|
|
48
48
|
|
49
49
|
print(f"PyerualJetwork is ready to use with {err} errors")
|
50
50
|
|
51
|
-
__version__ = "4.1.
|
51
|
+
__version__ = "4.1.8b4"
|
52
52
|
__update__ = "* Changes: https://github.com/HCB06/PyerualJetwork/blob/main/CHANGES\n* PyerualJetwork document: https://github.com/HCB06/PyerualJetwork/blob/main/Welcome_to_PyerualJetwork/PYERUALJETWORK_USER_MANUEL_AND_LEGAL_INFORMATION(EN).pdf\n* YouTube tutorials: https://www.youtube.com/@HasanCanBeydili"
|
53
53
|
|
54
54
|
def print_version(__version__):
|
pyerualjetwork/plan.py
CHANGED
@@ -102,8 +102,6 @@ def fit(
|
|
102
102
|
Returns:
|
103
103
|
numpyarray([num]): (Weight matrix).
|
104
104
|
"""
|
105
|
-
|
106
|
-
from model_operations import get_acc
|
107
105
|
|
108
106
|
# Pre-checks
|
109
107
|
|
@@ -340,18 +338,23 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
340
338
|
|
341
339
|
for i in range(len(activation_potentiation)):
|
342
340
|
print(f"\rPre-Run {i}/{len(activation_potentiation)}",end='')
|
343
|
-
|
341
|
+
|
344
342
|
if i == 0 and start_this_act is not None:
|
345
343
|
act_pop[0] = activation_potentiation[i]
|
346
|
-
|
344
|
+
|
347
345
|
else:
|
348
346
|
act_pop.append(activation_potentiation[i])
|
349
|
-
|
350
|
-
|
347
|
+
|
351
348
|
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
352
349
|
W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype)
|
353
350
|
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype)
|
354
351
|
|
352
|
+
if i == 0 and start_this_W is not None:
|
353
|
+
weight_pop[0] = W
|
354
|
+
|
355
|
+
else:
|
356
|
+
weight_pop.append(W)
|
357
|
+
|
355
358
|
if strategy == 'accuracy': target_pop.append(model[get_acc()])
|
356
359
|
elif strategy == 'f1' or strategy == 'precision' or strategy == 'recall':
|
357
360
|
precision_score, recall_score, f1_score = metrics(y_test_batch, model[get_preds()])
|
@@ -405,7 +408,7 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
405
408
|
|
406
409
|
if ((strategy == 'accuracy' and acc >= best_acc) or
|
407
410
|
(strategy == 'f1' and f1_score >= best_f1) or
|
408
|
-
(strategy == 'precision' and precision_score >= best_precision) or
|
411
|
+
(strategy == 'precision' and precision_score >= best_precision) or
|
409
412
|
(strategy == 'recall' and recall_score >= best_recall)):
|
410
413
|
|
411
414
|
best_acc = acc
|
pyerualjetwork/plan_cuda.py
CHANGED
@@ -107,8 +107,6 @@ def fit(
|
|
107
107
|
numpyarray([num]): (Weight matrix).
|
108
108
|
"""
|
109
109
|
# Pre-checks
|
110
|
-
|
111
|
-
from memory_operations import transfer_to_gpu, transfer_to_cpu
|
112
110
|
|
113
111
|
if train_bar and val:
|
114
112
|
train_progress = initialize_loading_bar(total=len(x_train), ncols=71, desc='Fitting', bar_format=bar_format_normal)
|
@@ -352,18 +350,23 @@ def learner(x_train, y_train, optimizator, x_test=None, y_test=None, strategy='a
|
|
352
350
|
|
353
351
|
for i in range(len(activation_potentiation)):
|
354
352
|
print(f"\rPre-Run {i}/{len(activation_potentiation)}",end='')
|
355
|
-
|
353
|
+
|
356
354
|
if i == 0 and start_this_act is not None:
|
357
355
|
act_pop[0] = activation_potentiation[i]
|
358
|
-
|
356
|
+
|
359
357
|
else:
|
360
358
|
act_pop.append(activation_potentiation[i])
|
361
|
-
weight_pop.append(W)
|
362
359
|
|
363
360
|
x_test_batch, y_test_batch = batcher(x_test, y_test, batch_size=batch_size)
|
364
361
|
W = fit(x_train, y_train, activation_potentiation=act_pop[-1], train_bar=False, auto_normalization=auto_normalization, dtype=dtype, memory=memory)
|
365
362
|
model = evaluate(x_test_batch, y_test_batch, W=W, loading_bar_status=False, activation_potentiation=act_pop[-1], dtype=dtype, memory=memory)
|
366
363
|
|
364
|
+
if i == 0 and start_this_W is not None:
|
365
|
+
weight_pop[0] = W
|
366
|
+
|
367
|
+
else:
|
368
|
+
weight_pop.append(W)
|
369
|
+
|
367
370
|
if strategy == 'accuracy': target_pop.append(model[get_acc()])
|
368
371
|
elif strategy == 'f1' or strategy == 'precision' or strategy == 'recall':
|
369
372
|
precision_score, recall_score, f1_score = metrics(y_test_batch, model[get_preds()])
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: pyerualjetwork
|
3
|
-
Version: 4.1.
|
3
|
+
Version: 4.1.8b4
|
4
4
|
Summary: PyerualJetwork is a machine learning library written in Python for professionals, incorporating advanced, unique, new, and modern techniques.
|
5
5
|
Author: Hasan Can Beydili
|
6
6
|
Author-email: tchasancan@gmail.com
|
@@ -1,4 +1,4 @@
|
|
1
|
-
pyerualjetwork/__init__.py,sha256=
|
1
|
+
pyerualjetwork/__init__.py,sha256=AHVG4kPWjJA2BALyEH8I33-IaATEcD1MXZuc9K_ZPIQ,2177
|
2
2
|
pyerualjetwork/activation_functions.py,sha256=WWOdMd5pI6ZKe-ieKCIsKAYPQODHuXYxx7tzhA5xjes,11767
|
3
3
|
pyerualjetwork/activation_functions_cuda.py,sha256=KmXJ5Cdig46XAMYakXFPEOlxSxtFJjD21-i3nGtxPjE,11807
|
4
4
|
pyerualjetwork/data_operations.py,sha256=ZM24BuPsIAtI0a_Exr4HgCjmlb285wEeO8juFY9sJr0,14680
|
@@ -11,14 +11,14 @@ pyerualjetwork/metrics.py,sha256=q7MkhnZDRbCjFBDDfUgrl8lBYnUT_1ro1LxeBq105pI,607
|
|
11
11
|
pyerualjetwork/metrics_cuda.py,sha256=73h9GC7XwmnFCVzFEEiPQfF8CwHIz2wsCbxpZrJtYgw,5061
|
12
12
|
pyerualjetwork/model_operations.py,sha256=hnhR8dtoICNJWIwGgJ65-LN3GYN_DYH4LMe6YpZVbnI,12967
|
13
13
|
pyerualjetwork/model_operations_cuda.py,sha256=XnKKq54ZLaqCm-NaJ6d8IToACKcKg2Ttq6moowVRRWo,13365
|
14
|
-
pyerualjetwork/plan.py,sha256
|
15
|
-
pyerualjetwork/plan_cuda.py,sha256=
|
14
|
+
pyerualjetwork/plan.py,sha256=-VwMyzxU6myxJlioCCq9kjP6kFSiEq7hCS-4F4uvsdY,35409
|
15
|
+
pyerualjetwork/plan_cuda.py,sha256=flOyaXeOUi0dMKn_kmTN2fvQYPqeehQxT-_PpwwBV6M,36037
|
16
16
|
pyerualjetwork/planeat.py,sha256=pVp8ndi5E_muwOTFmlcav70-5LLV5A2yA0_SgURvT08,40236
|
17
17
|
pyerualjetwork/planeat_cuda.py,sha256=3Vt5_zHUK4Jt_vW6LugQOy3to8gzQfT0_poPxeJTy68,40253
|
18
18
|
pyerualjetwork/ui.py,sha256=wu2BhU1k-w3Kcho5Jtq4SEKe68ftaUeRGneUOSCVDjU,575
|
19
19
|
pyerualjetwork/visualizations.py,sha256=QaYSIyVkJZ8NqpBKArQKkI1y37nCQo_KIM98IMssnRc,28766
|
20
20
|
pyerualjetwork/visualizations_cuda.py,sha256=9qw46Y4bo67l0nVVF1FSNS8ksyzbIAJdaPDFOhN5J8Y,29188
|
21
|
-
pyerualjetwork-4.1.
|
22
|
-
pyerualjetwork-4.1.
|
23
|
-
pyerualjetwork-4.1.
|
24
|
-
pyerualjetwork-4.1.
|
21
|
+
pyerualjetwork-4.1.8b4.dist-info/METADATA,sha256=ssSDHmcH9nN7POx5EfZh1n0CkYreyK8myuDtXT3kUrQ,7795
|
22
|
+
pyerualjetwork-4.1.8b4.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
23
|
+
pyerualjetwork-4.1.8b4.dist-info/top_level.txt,sha256=BRyt62U_r3ZmJpj-wXNOoA345Bzamrj6RbaWsyW4tRg,15
|
24
|
+
pyerualjetwork-4.1.8b4.dist-info/RECORD,,
|
File without changes
|
File without changes
|